
UniData
UniData Commands Reference
Version 6.0
September, 2002
Part No. 000-9204

ii UniData Commands
IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials – Property of IBM

© Copyright International Business Machines Corporation 2002. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, OS/390,

and OS/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix®

DataBlade® module, Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix®

Driver for JDBC, Dynamic Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM

Informix® Dynamic Server™, IBM Informix® Enterprise Gateway Manager (Enterprise Gateway Manager),

IBM Informix® Extended Parallel Server™, i.Financial Services™, J/Foundation™, MaxConnect™, Object

Translator™, Red Brick® Decision Server™, IBM Informix® SE, IBM Informix® SQL, InformiXML™,

RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®, wIntegrate® are trademarks or registered

trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,

Inc. in the United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation

in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open

Company Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of

others.

This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson

US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Reference

Table of Contents

Table of
Contents
About This Manual 1-2

Elements of Syntax Statements 1-2

ACCT_RESTORE 1-5

acctrestore 1-13

ACCT.SAVE 1-15

AE . 1-17

Common AE Commands 1-18

ANALYZE.FILE 1-20

auditor . 1-23

AVAIL . 1-25

BASIC . 1-27

BASICTYPE 1-30

BLIST . 1-32

BLOCK.PRINT 1-35

BLOCK.TERM 1-37

BUILD.INDEX 1-39

BYE. 1-42

CATALOG 1-43

CENTURY.PIVOT 1-48

CHECKOVER 1-50

CLEAR.ACCOUNT 1-51

CLEAR.FILE. 1-52

CLEAR.LOCKS. 1-55

CLEAR.ONABORT 1-56

CLEAR.ONBREAK 1-58

CLEARDATA 1-59

CLEARPROMPTS 1-61

clearq . 1-62

CLR. 1-63

CNAME . 1-64

cntl_install 1-67

COMO. 1-68

iv UniDa
COMPILE.DICT 1-72

CONFIGURE.FILE 1-74

confprod. 1-77

CONNECT 1-79

CONTROLCHARS 1-86

convcode 1-88

convdata. 1-89

convhash 1-91

convidx . 1-94

convmark 1-96

CONVERT.SQL 1-100

COPY. 1-104

CREATE.FILE 1-110

Estimating the Modulo 1-114

Estimating the File Size 1-115

Special Considerations for Dynamic Files 1-115

CREATE.INDEX 1-117

CREATE.TRIGGER 1-121

DATE . 1-124

DATE.FORMAT 1-125

dbpause . 1-127

dbpause_status 1-129

dbresume 1-130

DEBUG.FLAG. 1-131

DEBUGLINE.ATT 1-133

DEBUGLINE.DET 1-134

DEFAULT.LOCKED.ACTION 1-135

DELETE . 1-137

DELETECOMMON 1-140

DELETE.CATALOG. 1-143

DELETE.FILE 1-146

DELETE.INDEX 1-149

DELETE.TRIGGER 1-151

deleteuser 1-153

DISABLE.INDEX. 1-155

DISABLE.USERSTATS 1-157

DTX . 1-158

dumpgroup 1-159

DUP.STATUS 1-161

ECLTYPE 1-163

ED . 1-165

ENABLE.INDEX 1-168
ta Commands Reference

ENABLE.USERSTATS 1-170

FILE.STAT 1-171

FILELIMIT 1-174

FILEVER 1-175

fixfile . 1-176

fixgroup 1-183

fixtbl . 1-185

FLOAT.PRECISION 1-188

Rounding Before Truncating with FLOAT.PRECISION 4, round 1-190

forcecp . 1-196

GETUSER. 1-197

GROUP.STAT 1-198

gstt . 1-201

guide . 1-202

guide_ndx 1-210

HASH.TEST 1-213

HELP . 1-216

HUSH . 1-218

HUSHBASIC 1-220

ipcstat . 1-222

ISTAT . 1-224

kp . 1-225

LIMIT . 1-226

LINE.ATT. 1-227

LINE.DET. 1-229

LINE.STATUS 1-231

LIST.CONNECT 1-233

LIST.INDEX 1-235

Using Indexes Created in an Earlier Release 1-235

LIST.INDEX Display 1-237

STATISTICS Display 1-238

LIST.LANGGRP 1-241

LIST.LOCKS 1-242

LIST.PAUSED 1-245

LIST.QUEUE. 1-247

LIST.READU. 1-253

LIST.TRIGGER 1-256

LIST.USERSTATS 1-258

LISTPEQS. 1-261

LISTPTR 1-262

LISTUSER 1-263

LO . 1-267
Table of Contents v

vi UniDa
LOCK. 1-268

log_install 1-270

LOGTO . 1-272

LS . 1-274

LSL . 1-276

lstt . 1-277

MAG_RESTORE 1-279

Preparing for Restoration 1-282

Files Created by MAG_RESTORE 1-284

MAKE.MAP.FILE 1-286

makeudapi 1-287

makeudt . 1-289

MAP . 1-291

MAX.USER. 1-293

mediarec. 1-294

memresize 1-296

Default Rules 1-299

MENUS . 1-302

MESSAGE 1-303

MIN.MEMORY 1-307

mvpart . 1-308

MYSELF . 1-311

newacct . 1-312

newhome 1-314

Creating an Alternate Catalog Space on UniData for

Windows Platforms. 1-315

Creating an Alternate Catalog Space on UniData for UNIX . . 1-321

NEWPCODE 1-323

newversion 1-325

NFAUSER 1-328

NODIRCONVERT 1-329

ON.ABORT. 1-330

ON.BREAK. 1-332

PAGE . 1-334

PATHSUB 1-336

PAUSE . 1-338

PHANTOM 1-340

PHANTOM Command Exit Codes 1-341

PORT.STATUS. 1-344

PRIMENUMBER 1-347

PRINT.ORDER 1-348

PROTOCOL 1-350
ta Commands Reference

PTERM 1-353

PTRDISABLE 1-355

PTRENABLE 1-358

QUIT . 1-360

READDICT.DICT 1-361

REBUILD.FILE 1-362

RECORD 1-365

RELEASE 1-367

RELEASE.ITEMS 1-368

RESIZE 1-370

REUSE.ROW. 1-376

RUN . 1-377

sbcsprogs 1-379

SET.DEC 1-380

SET.LANG 1-382

SET.MONEY 1-384

SET.THOUS 1-386

SET.TIME 1-388

SET.WIDEZERO 1-389

SETDEBUGLINE 1-390

SETFILE 1-391

SETLINE 1-397

SETOSPRINTER 1-399

SETPTR 1-401

SETPTR (UniData for Windows Platforms) 1-408

Redefining the Default UniData Print Unit 1-417

Submitting Concurrent Print Jobs 1-417

SETTAPE 1-418

shmconf 1-421

showconf 1-422

SG.LIST 1-426

showud 1-427

smmtest 1-428

smmtrace 1-430

sms . 1-432

SORT . 1-436

SORT.TYPE 1-437

SP.ASSIGN 1-441

SP.CLOSE 1-444

SP.EDIT 1-446

SP.KILL 1-448

SP-LISTQ 1-450
Table of Contents vii

viii UniD
SP.STATUS 1-451

SPOOL . 1-453

SQL . 1-455

STACKCOMMON 1-456

STARTPTR 1-458

startud . 1-459

STATUS . 1-461

STOPPTR 1-463

stopud . 1-464

stopudt . 1-465

SUPERCLEAR.LOCKS 1-467

SUPERRELEASE 1-469

sysmon . 1-470

systest . 1-472

T.ATT. 1-474

T.BAK . 1-477

T.CHK . 1-479

T.DET. 1-481

T.DUMP . 1-482

T.EOD . 1-485

T.FWD . 1-486

T.LOAD . 1-487

T.RDLBL. 1-490

T.READ . 1-492

T.REW . 1-495

T.SPACE . 1-496

T.STATUS 1-498

T.UNLOAD 1-500

T.WEOF . 1-501

tandem . 1-502

tandem Modes 1-502

TERM . 1-504

TIMEOUT 1-506

trunclog . 1-507

udfile . 1-509

udipcrm . 1-511

udstat. 1-512

udt. 1-515

udtbreakon 1-518

udtconf . 1-519

udtinstall 1-523

udtlangconfig 1-524
ata Commands Reference

udtmon 1-526

udtts . 1-527

UDT.OPTIONS 1-529

uniapi_admin 1-531

UNIENTRY 1-532

UNSETDEBUGLINE 1-535

UNSETLINE 1-536

UPDATE.INDEX 1-537

updatesys 1-539

updatevoc 1-540

usam . 1-544

USHOW 1-545

UV_RESTORE 1-547

VCATALOG 1-550

verify2 . 1-552

VERSION 1-553

VI . 1-554

WAKE . 1-556

WHAT . 1-558

WHERE 1-559

WHO . 1-560

XTD. 1-561
Table of Contents ix

x UniDa
ta Commands Reference

In This Introduction
This introduction provides an overview of the information in this manual

and describes the conventions it uses.
Introduction 1-1

About This Manual
This manual contains an alphabetic listing of UniData commands and

keywords and provides related syntax, options, and examples. This manual

provides both ECL commands and system-level commands. All of the

examples in this manual use the UniData demo account and its database files.

UniData provides the Environment Control Language (ECL), a proprietary

command language to handle database management functions. ECL

commands execute from the UniData colon prompt (:).

ECL commands and keywords install when you install UniData. They are

stored in the UniData Vocabulary (VOC) file. In this manual, these

commands appear in uppercase. If you enter commands in lowercase, you

invoke the UniData parser, regardless of the ECLTYPE setting.

UniData also provides system-level commands, which you execute from the

shell prompt. System-level commands are stored in the udtbin directory. In

general, these commands must be entered in lowercase. You can execute

some system-level commands from the UniData colon prompt by entering

the ! (bang) command first (e.g., :!systest).

Elements of Syntax Statements

This reference manual uses a common method for stating syntax for UniData

commands. The syntax statement includes the command name, required

arguments, and options that you can use with the command. Italics

represents a variable that you can replace with any valid option. The

following figure illustrates the elements of a syntax statement:
Introduction 1-2

COMMAND required [option] [option1 | option2]
{ option1 | option2} required... "string"

command names

no brackets or braces
indicates a required

argument

square brackets indicate
an optional argument

a vertical line indicates that
you may choose between

the given arguments

braces indicate that you
must choose between
the given arguments

an ellipsis indicates that
you may enter more than

one argument

quotation marks

appear in boldface

must enclose a
literal string
Introduction 1-3

!

Syntax

! system_command

Description

The ECL ! (bang) command gives a UniData process access to the operating

system. With this access, you can execute operating system and UniData

system-level commands.

Example

In the following example, the ! command executes the “pwd” UNIX

command and the “showud” UniData system-level command:

: !pwd
/home/claireg
: !showud
UID PID TIME COMMAND
root 18126 0:00 /disk1/ud60/bin/aimglog 0 23192
root 18127 0:00 /disk1/ud60/bin/aimglog 1 23192
root 18121 0:00 /disk1/ud60/bin/bimglog 2 23192
root 18122 0:00 /disk1/ud60/bin/bimglog 3 23192
root 18114 0:04 /disk1/ud60/bin/cleanupd -m 10 -t 20
root 18123 0:53 /disk1/ud60/bin/cm 23192
root 18110 0:00 /disk1/ud60/bin/sbcs -r
root 18119 0:00 /disk1/ud60/bin/sm 60 6354
root 18103 0:02 /disk1/ud60/bin/smm -t 60
root 18145 0:00 /disk1/unishared/unirpc/unirpcd
Introduction 1-4

ACCT_RESTORE

Syntax

ACCT_RESTORE [-D] [-E]

[-F outputfile]

[-H [DYNAMIC0 | DYNAMIC1]

[-O] [-S]

[-VREAL7] [-Z] [-U [0-9]] [-M [0-3]] [-X char_list] [-B [1 | 2 | 4 | 8]][-K n] [-L]

[-A outputfile] [-C outputfile] [-I I_list]
[-[X]R {ALL | filelist}] [-[X] Y filelist] [-YX filelist]
[acct_name]

Description

The system-level ACCT_RESTORE command restores Pick®

R83-compatible accounts that were saved to tape in UniData format using the

Pick® commands ACCT-SAVE and FILE-SAVE. The account must be

compatible with Pick® R83 (it can contain no records larger than 32K and a

minimum block size of 512). When you are restoring multiple accounts,

UniData prompts for owner and group for each.

Tip: Use backward compatibility options with your save from the Pick® system,
except with MCD Rev 7. When saving from Reality 7.0, use the -VREAL7 flag.

ACCT_RESTORE restores accounts, with their original names, to the current

directory. If UniData cannot read the account name from tape, it uses

acct_name. If no account of the same name exists in the current directory,

UniData executes the newacct command to create one.

UniData loads Pick® DC-type files as UniData directory files with their

dictionaries intact.

The executable for this command is located in your udtbin directory.

See “Preparing for Restoration” following the Parameters table for a

recommended procedure for restoring files efficiently.
 1-5

Parameters

You can enter ACCT_ RESTORE parameters in lowercase or uppercase. Some

Pick®systems allow a hash type in the separation field in a file pointer.

Parameter Description

-D Overwrites the data portion of files with data files from the
tape, but does not create new ones.

The account must already exist, and all dictionary files
must have been previously converted. Restores only
hashed data files, not Pick

®
 DC-type files (DC-type

corresponds to UniData DIR-type).

-E Clears each file on disk before restoring it from tape.

-F outputfile Restores dictionary files using the list of files in outputfile.

To restore data and dictionary files, use the -R option.
Provide filelist, a list of files to be restored.

-H[DYNAMIC0 |
DYNAMIC1]

Converts all restored files to dynamic with:

DYNAMIC0 – hash type 0

DYNAMIC1 – hash type 1 (default)

-O Overwrites all data in the account, including that in
dictionary and DIR-type files, from tape. The files must
already exist in the current directory.

Execute ACCT_RESTORE -C to create the files on disk
before executing ACCT_RESTORE -O to populate them.

-S Truncates file names to 12 characters in length.

-VREAL7 Enables compatibility with REALITY 7.0, which allows for
registration of items larger than 32K.

ACCT_RESTORE Parameters
1-6 UniData Commands Reference

-Z Skips zero-length blocks on multireel tapes, floppy
diskettes, or tape volume.

When UniData encounters one or more zero-length
blocks, it pauses at the end-of-file mark and prompts for
user response before continuing. You must respond with
one of the following:

E — Terminate.

F — Advance to EOR (end-of-reel). Use only when you are
sure you are at the end or the tape or disk image.

C — Go to the next file on the tape. Use when several files
are saved on the tape and you want to load them all.

-U [0-9] Indicates a tape unit to read from. The tape unit must be
described in the tapeinfo file in udthome/sys. Default is 0.

Use the ECL SETTAPE command first to set tape unit
attributes.

-M [0-3] Converts data based on one of the following options:

0 — Default. No conversion. Data is assumed to be ASCII.

1 — EBCDIC conversion.

2 — Invert high bit.

3 — Swap bytes.

-X [char_list] char_list indicates characters to be considered invalid for

file names

account names

record IDs in DIR-type files

While restoring, UniData converts these characters to
underscore (_). If the resulting name conflicts with an
existing account name, UniData adds a character to the
end of the name to make it unique. For example: A&B
becomes A_B. If A_B is used by another file, the name
becomes A_Ba.

Default invalid characters are the following: space * ? / & '.

You cannot specify nonprinting characters as invalid.

Do not separate characters in char_list with spaces or
commas.

Parameter Description

ACCT_RESTORE Parameters (continued)
 1-7

-B [1 | 2 | 4 | 8] Each option corresponds to a block size (in bytes) of the
data on the tape.

0.5 — 512 (default)

1 —1024

2 — 2048

4 — 4096

8 —8192

-K n Defines the size of the internal memory buffer (in
kilobytes). Default size is 8000 kilobytes.

System restoration performs best when buffer size is large.
Change the size to match the capacity of your operating
system.

-L Restores all files as type LF or LD.

-A filename Creates filename, an ASCII text file, in the current directory,
containing statistics about each file on the tape. -A does
not restore files. (See “Preparing for Restoration”
following this table).

-C filename Reads the file created by a previous execution of
ACCT_RESTORE with the -A filename option. Creates, in
the current directory, the files listed in filename, but does
not restore data.

-I I_list Recovers the operation after an interruption. UniData
prompts for names of files already loaded. See “Resuming
after an Interruption” after this table.

X Reverses the effect of -R or -Y. Syntax and effect is:

-[X]R – Files in filelist are not restored.

-[X]Y – Files in filelist remain static.

Parameter Description

ACCT_RESTORE Parameters (continued)
1-8 UniData Commands Reference

Preparing for Restoration

IBM recommends that you follow this procedure to make the restoration

more efficient. Use the -A option in conjunction with -C and -O to determine

file status before files are loaded. This decreases load time, because UniData

then does not have to resize files during restoration.

-R filelist | ALL Restores both data and dictionary portions of files listed in
filelist. You create filelist, an ASCII file containing a single-
line entry for each file to be ignored. Syntax for each entry
is the following:

[filename] [,acct_name]

Include filename only to load all files from a single account.

Include acct_name only to load all files from a specific
account.

-Y filelist Converts the files in filelist to dynamic. Used in
conjunction with the HDYNAMIC0 or -HDYNAMIC1
option.

You create filelist, an ASCII file containing a single-line
entry for each file to be ignored. Syntax for each entry is
the following:

[filename] [,acct_name]

acct_name New name for the restored account to be used if UniData
cannot obtain a name from the account on tape.

Parameter Description

ACCT_RESTORE Parameters (continued)
 1-9

1. Execute “ACCT_RESTORE -A filename” to generate a file containing

statistics about the files on tape. Use these statistics to evaluate the

suitability of the projected modulo, file type, and file separation.

filename is stored in the current directory. For each file, UniData lists

the following on a single line separated by commas:

■ The position of the file on the tape.

■ The type of UniData file.

■ The name of the UniData file.

■ File separation.

■ New or recommended modulo — Informix recommends a

modulo based on the number of records and the size of the file.

This recommended modulo is never smaller than the original

modulo.

■ The original modulo of the file on tape.

■ The proposed key length for the UniData file.

■ The total record length for the file.

■ The number of records in the UniData file.

2. Use an ASCII text editor to modify the file generated in Step 1 as

desired. For example, you might eliminate files from the list that you

do not want UniData to restore.

3. Execute “ACCT_RESTORE -C filename” to create new UniData files

in the destination directory. Remember, filename must be the name of

the file created in Step 1. You can add options as desired.

4. Execute “ACCT_RESTORE -O filename” to load the data and

dictionary records into the files created in Step 3. You can add

options as desired.

Resuming after an Interruption

Follow this procedure if you are interrupted when restoring files with the -C,

-R, or -O options.
1-10 UniData Commands Reference

1. Check the last 10 lines of the dispmsg file in the current directory, and

record the message about the last reel. The following is an example

of 10 lines from a dispmsg file:

D[2].flag=0
D[3].flag=0
D[1].count=1
D[2].count=194
D[3].count=195
D[2].rel.relname=DIFF
D[3].rel.relname=DIFF
D[2].sname=DIFF
D[3].sname=DIFF
IC3~01220~0011ABC~3

2. To ensure that no files are skipped, enter the last 10 statements into

I_list file.

3. Remount the interrupted reel.

4. Execute “ACCT_RESTORE -I”.

UniData reads I_list, displays the name of each file loaded, and

prompts you to skip or reload it (overwriting the existing copy).

ACCT_RESTORE Messages

UniData may display the following messages during the restore.

Message Description

Create file modulo
separator [---newfile]

UniData is loading the file using the modulo and
separator found in the tape. If the file name contains
invalid characters or if the file name is too long, UniData
changes it to “newfile”.

DUMP_MD UniData is reading an MD file.

DICT UniData is reading a dictionary file.

DATA UniData is reading a single-level hashed data file.

DIR UniData is reading a single-level sequential file.

LF UniData is reading a multi-level hashed data file.

LD UniData is reading a multi-level sequential file.

ACCT_RESTORE Messages
 1-11

Files Created by ACCT_RESTORE

UniData creates the following files in the restored account by default.

Loading (filename)... UniData is loading the data into existing files rather than
creating files. This is the default when you run
ACCT_RESTORE with the -D, -F, or -O option.

Replace to multi-level
success.

A single-level file changed to a multi-level file.

Replace to multi-level
failure.

UniData failed to change a single-level file into a multi-
level file.

Resize (filename) to
new modulo ---
(modulo)

The file called filename has an inadequate modulo;
UniData resized the file to a more efficient modulo
(modulo).

Create file failure. UniData failed to create the file.

Open file failure. UniData failed to open the file.

File Description

analyze_list Lists number of records, total key length, and total record
length for each file.

DUMP_MD Hashed file. Contains the account’s original Pick
®

 MD
file.

pgm_list Text file. Record of program names altered by the load.
UniData conversion tools use this file.

dispmsg Text file. A compilation of all messages generated during
the restore.

resize_list Text file. Record of file names that may be resized at a
later time.

ACCT_RESTORE-Related Files

Message Description

ACCT_RESTORE Messages (continued)
1-12 UniData Commands Reference

acctrestore

Syntax

acctrestore [n]

Description

The system-level acctrestore command restores a UniData account from a

tape backup. The account must have been saved with the ACCT.SAVE

command. acctrestore operates on a single tape volume. n represents the tape

unit number in the udthome/sys/tapeinfo file. Use the SETTAPE command to

define the tape unit.

Note: acctrestore is supported on UniData for UNIX only.

You must have permission to read from and write to the tape device to use

this command. For more information about managing UniData accounts, see

Administering UniData.

This command does not function if the Recoverable File System is running. If

you used the ACCT.SAVE command to save an account that contains

recoverable files, acctrestore does not restore those files as recoverable. To

convert them to recoverable, run the udfile command against them. See

Administering the Recoverable File System for more information about udfile

and recoverable files.

Warning: To avoid file corruption, do not use this command while UniData is
running.

Note: acctrestore uses the UNIX cpio utility: cpio -iBvd < %s”, raw
 1-13

Example

In the following example, UniData restores a file and its subdirectories from

a backup tape:

$UDTBIN/acctrestore
Status: Tape unit 0 blocksize = 1024.
cpio -iBvd < /users/claireg/tape
.
BP
BP_SOURCE
BP_SOURCE/GPA1
BP_SOURCE/PHONE_FMT
BP_SOURCE/PSTLCODE_FMT
BP_SOURCE/UP_NAME
BP_SOURCE/_GPA1
BP_SOURCE/_PHONE_FMT
BP_SOURCE/_PSTLCODE_FMT
BP_SOURCE/_UP_NAME
CATEGORIES
...
650 blocks
#

Related Command

ACCT.SAVE
1-14 UniData Commands Reference

ACCT.SAVE

Syntax

ACCT.SAVE

Synonym

ACCT-SAVE

Description

The ECL ACCT.SAVE command saves the current UNIX directory and all of

its subdirectories to the device defined as tape unit 0 in udthome/sys/tapeinfo.

Note the following before using ACCT.SAVE:

■ Before you use this command, use the SETTAPE command to define

the tape unit.

■ This command does not function if the Recoverable File System is

running.

■ You must have permissions to write to the tape device to use this

command.

■ ACCT.SAVE uses the UNIX cpio utility: find . -print | cpio -oBv >

%s”,raw

Note: ACCT.SAVE is only supported on UniData for UNIX.
 1-15

Example

In the following example, UniData saves the current UNIX directory and its

subdirectories to tape unit 0. Notice how UniData displays a list of all

subdirectories in the account. You must already have defined a device as tape

unit 0 with the SETTAPE command.

: ACCT.SAVE
find . -print | cpio -oBv > /users/claireg/tape
.
BP
BP_SOURCE
BP_SOURCE/GPA1
BP_SOURCE/PHONE_FMT
BP_SOURCE/PSTLCODE_FMT
BP_SOURCE/UP_NAME
BP_SOURCE/_GPA1
...
650 blocks

Related Command

acctrestore
1-16 UniData Commands Reference

AE

Syntax

AE [filename] [record]

Description

The ECL AE command invokes the UniData Alternate Editor. You can use

this line editor to edit UniData hashed files and UniBasic source programs. If

you do not indicate the filename or record, AE prompts for them. See

Developing UniBasic Applications for a brief introduction to the editor.

If you have an active select list, you can execute AE from the select list

prompt rather than entering record, and UniData opens each record

successively: when you close one record, the next one opens. To exit the select

list without saving changes, enter QK at the command prompt in AE. See

Using UniData for instructions on creating and using select lists.

UniData displays a warning message if a trigger prevents record update or

deletion. See Developing UniBasic Applications or CREATE.TRIGGER in this

manual for more information on UniData triggers.

Regarding other editors:

■ The ECL ED command invokes the standard operating system editor

supported by UniData. See ED in this manual for more information.

■ UniData also supplies UniEntry for modifying UniData records.

■ On UniData for UNIX, the ECL VI command invokes vi, the UNIX

System V visual editor, from within UniData.

■ You can edit UniData hashed files and DIR-type files with any ASCII

text editor. Refer to your operating system documentation for more

information on supported editors. Be aware, though, of any changes

or conversions the editor might make to files it opens.

Tip: To display the ASCII code for control characters (including UniData delimiters
and the null value) in AE, press SHIFT+6.
 1-17

Parameters

The following table describes each parameter of the syntax.

Common AE Commands

The following table lists commonly used AE editor commands.

Parameter Description

filename Name of the file to edit or create.

record ID of the record to edit or create.

AE Parameters

Command Description

C/old.string
/new.string

Changes the current character string to a new character
string on the current line.

P Displays one page of the record.

HELP Displays online help for AE. You can also enter HELP
followed by a topic or AE command.

You can also access the UniData help system using the
XEQ command. For example, “XEQ HELP SELECT”.

I Enters insert mode to enter text.

EX or Q Exits the record without saving changes made this editing
session.

FI Files the UniBasic program record, saving changes.

FIB Files the UniBasic program record and compile it.

FIBR Files the UniBasic program record, compile it, and run it.

If the compile is unsuccessful, the last successfully
compiled version is executed.

Common AE Commands
1-18 UniData Commands Reference

Example

In the following example, the AE command opens record 9999 of the

CLIENTS file for editing:

: AE CLIENTS 9999
Top of "9999" in "CLIENTS", 10 lines, 95 characters.
*--:

Related Commands

ED, VI

FIR Files the UniBasic program record and run the compiled
version.

Be aware that the compiled version may differ from the
one you are editing.

FIBCFN The N option of the FI command equates to the ECL
NEWPCODE command. FIBCFN compiles a program and
catalogs it (locally) with NEWPCODE. You need to use F
(force) in conjunction with the N option. Refer to the
online help for the AE editor for more information.

LNn Lists the number of lines indicated with no line numbers.

n Goes to line number n.

T Goes to the top of the record.

SPOOLHELP Prints brief help.

SPOOLHELP
-FULL

Prints extensive help.

<Return> Returns to command mode.

Command Description

Common AE Commands (continued)
 1-19

ANALYZE.FILE

Syntax

ANALYZE.FILE filename

Synonym

ANALYZE-FILE

Description

The ECL ANALYZE.FILE command displays information about a dynamic

file. The output includes information about the file’s size, split/merge type,

and hash type. The output also lists all the groups in the file along with

loading information for each. The output of this command differs depending

on the split/merge type of the file being analyzed.

Examples

The following example displays file and group information about the

dynamic file INVENTORY in the demo database:
1-20 UniData Commands Reference

: ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 1, blocksize = 1024
Split load = 60, Merge load = 40
Split/Merge type = KEYONLY

 Group Keys Key Loads Percent
===
 0 6 84 8
 1 3 42 4
 2 5 70 6
 3 11 154 15
...
 15 8 112 10
 16 11 154 15
 17 8 112 10
 18 2 28 2
===
 Average 9 128 12
File has 175 records.
:

Notice that the INVENTORY file is a KEYONLY file. For purposes of splitting

and merging, the loading factor for each group is computed (and shown)

based on keys only.

The next example shows ANALYZE.FILE output if the split/merge type of

the INVENTORY file is changed to KEYDATA.

: ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 95, Merge load = 40
Split/Merge type = KEYDATA

1 Group Keys Key Loads Percent Key+Data Percent
1 ===
1 0 9 126 12 836 81
1 1 8 112 10 692 67
1 2 9 126 12 808 78
1 3 7 98 9 598 58
1 ...
1 15 9 126 12 812 79
1 16 10 140 13 839 81
1 17 9 126 12 769 75
1 18 7 98 9 651 63
1 ===
1 Average 9 128 12 783 76
1 File has 175 records.
1 :
 1-21

Notice that the split/merge type is now KEYDATA. For purposes of splitting

and merging, the load factor for each group is based on both keys and data.

For KEYDATA files, ANALYZE.FILE reports load based on keys as well as

load based on both keys and data.
1-22 UniData Commands Reference

auditor

Syntax

auditor

Description

The system-level auditor command detects certain types of error conditions

that affect dynamic files.

When a dynamic file expands outside the file system in which it was created,

the “part files” are placed in a file system selected from a “part table” (a list

of locations where the original file can expand). The original dynamic file

directory contains UNIX symbolic links to the physical location of the data

and overflow “part files.” In each file system in which dynamic files expand,

UniData maintains a UNIX hidden file called .fil_prefix_tbl that relates part

file names back to their original dynamic file and account.

The auditor command reports inconsistencies between the symbolic links

and the hidden files that should be resolved. If inconsistencies aren’t

resolved, users may encounter unexpected results (for instance, part files

from the same dynamic file may be created in different directory structures

for no apparent reason, or commands may fail unexpectedly due to naming

conflicts). This command also reports an error if a part file is not found in the

correct location. Your current working directory must be a UniData account.

The auditor command checks all the dynamic files that have pointers in the

current account directory’s VOC file.

Note: auditor is supported on UniData for UNIX only.

The auditor command does not check all possible error conditions that can affect a
dynamic file. After you resolve any conditions reported by auditor, use the guide
command to verify the integrity of your files.
 1-23

Examples

The following example shows auditor output from a UniData account:

: !auditor
In current account, VOC entry SAMPLE_FILE3, is a pointer to
SAMPLE_FILE3.
There is a mismatch between the symbol link for 'dat001'
of SAMPLE_FILE3 and /tmp/partfiles/.fil_prefix_tbl.

In current account, VOC entry SAMPLE_FILE3, is a pointer to
SAMPLE_FILE3.
There is a mismatch between the symbol link for 'over001'
of SAMPLE_FILE3 and /tmp/partfiles/.fil_prefix_tbl.

:

The next example shows auditor output when no inconsistencies are found:

: !auditor

auditor finished, no error was detected.

:

Related Commands

fixtbl, mvpart
1-24 UniData Commands Reference

AVAIL

Syntax

AVAIL

Description

The ECL AVAIL command displays the number of blocks the operating

system is using and the number of free blocks. AVAIL is a UniData

implementation of the UNIX “df” command. Results vary depending on the

operating system type and release. Refer to your host operating system

documentation for a detailed explanation of the output from the df

command.

Note: AVAIL is supported on UniData for UNIX only.

You can execute df with options from the UniData colon prompt (:) by preceding the
command with the UniData (bang) command.
 1-25

Example

In the following example, the AVAIL command is executed. It displays

information on the number of blocks used by UNIX and the number of blocks

free.

: AVAIL
/usr (/dev/vg00/lvol3): 44364 blocks 33380 i-nodes
 332592 total blocks 43008 total i-
nodes
 254968 used blocks 9628 used i-
nodes
 10 percent minfree

/users (/dev/vg00/lvol4): 79134 blocks 222993 i-nodes
 1860880 total blocks 241664 total i-
nodes
 1595658 used blocks 18671 used i-
nodes
 10 percent minfree

/tmp (/dev/vg00/lvol5): 41930 blocks 5989 i-nodes
 63860 total blocks 6144 total i-
nodes
 15544 used blocks 155 used i-
nodes
 10 percent minfree

/ (/dev/vg00/lvol1): 12152 blocks 19071 i-nodes
 166000 total blocks 22528 total i-
nodes
 137248 used blocks 3457 used i-
nodes
 10 percent minfree
 :
1-26 UniData Commands Reference

BASIC

Syntax

BASIC filename [TO filename] prog.name1 [progname2...] [options]

Description

The ECL BASIC command compiles UniBasic source code into interpretive

code to be used with the UniBasic interpreter. UniData names the resulting

object code record _prog.name, where prog.name is the name of the source code

record.

Tip: You can create a select list, then execute BASIC to compile all programs in the
select list. For example, to select and compile all UniBasic source files in the BP
directory, enter SELECT BP WITH @ID UNLIKE “_...” Then, enter BASIC BP

from the select prompt.

Note: The UniBasic compiler returns nonfatal warning messages. If you run batch
jobs to compile groups of programs, you need to code those jobs to terminate only if
the compiler returns error messages. Messages beginning with “Warning:” should
not terminate processing.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename UniData DIR-type file containing the source code to be
compiled.

BASIC Parameters
 1-27

BASIC Options

The following table lists the BASIC command options.

TO filename UniData DIR-type file to receive the object code record, if
different from the location of the source code record.

program Source code to be compiled. You can compile more than
one program by separating the names with a space.

options See “BASIC Options” in this section.

Option Description

-D Creates a cross-reference table for use with the UniBasic
debugger.

-G Generates a program that you can run with profiling.

-L
-LIST

Generates a list of the program.

-X
-XREF

Generates a cross reference table of statement labels and
variable names used in the program.

-Zn Creates a symbol table for use with the UniBasic debugger.
UniData doesn’t recompile the program or expand $INCLUDE
statements. Use one of the following options:

■ Z1 – for programs compiled on a UniData release

earlier than release 3.1

■ Z2 – for programs compiled on UniData Release

3.1 or later.

-I If you compile a program with the -I option, all reserved words
in UniBasic are case insensitive.

options Parameters

Parameter Description

BASIC Parameters (continued)
1-28 UniData Commands Reference

Examples

In the following example, the BASIC command compiles the program TEST,

found in the BP file, and stores the resulting object code as _TEST.

: BASIC BP TEST -D

Compiling Unibasic: BP/TEST in mode ‘u’.
compilation finished

In the next example, the SELECT command saves in select list 0 the names of

all programs in the BP file with names (record IDs) beginning with T. Then,

the BASIC command compiles the selected program.

: SELECT BP WITH @ID LIKE “T...”

1 record selected to list 0.

>BASIC BP

Compiling Unibasic: BP/TEST in mode ‘u’.
compilation finished.

The following example saves the executable in a DIR-type file different from

the one that contains the source code. In the first line, the program, test,

which resides in BP, is compiled, and the executable placed in PROGRAMS.

Then the program is executed from PROGRAMS. The program prints

“Hello”.

: BASIC BP TO PROGRAMS test

Compiling Unibasic: BP/test in mode ‘u’.
compilation finished
: RUN PROGRAMS test
Hello
 1-29

BASICTYPE

Syntax

BASICTYPE [“U | P | R | M”] [filename program]

Description

The ECL BASICTYPE command selects the parser that UniData uses to

interpret UniBasic commands for the duration of this session or until you

execute BASICTYPE to select a different parser. This command is useful

when compiling programs that need to be backwardly compatible.

If you do not include any parameters with this command, UniData returns

the current BASICTYPE. If you do not select a parser option, but you do

indicate a filename and program, UniData returns the BASICTYPE in which the

program was compiled.

This ECL command performs the same function as the UniBasic

$BASICTYPE command. For more information on the commands affected by

BASICTYPE, refer to the individual commands in Developing UniBasic
Applications.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

“U” UniData interprets commands and keywords consistent with the
UniData parser. Must be enclosed in quotation marks.

“P” UniData interprets commands and keywords consistent with the
Pick® BASIC parser. Must be enclosed in quotation marks.

“R” UniData interprets commands and keywords consistent with the
Advanced Revelation® BASIC parser. Must be enclosed in quotation
marks.

BASICTYPE Parameters
1-30 UniData Commands Reference

Examples

In the following example, the BASICTYPE command, executed without any

parameters, returns the current BASICTYPE (in this case standard UniData.

: BASICTYPE
BASICTYPE u
:

In the next example, the BASICTYPE command sets the BASICTYPE to P, for

Pick® BASIC.

: BASICTYPE “P”
:

In the next example, UniData returns the BASICTYPE of the demo program

PHONE_FMT in the directory file BP_SOURCE.

: BASICTYPE BP_SOURCE PHONE_FMT
Basic program ‘BP_SOURCE/_PHONE_FMT’was compiled with mode ‘u’.
:

Warning: Take care not to mix BASICTYPES in an application. For instance, do not
call a P-type subroutine from a U-type program. Because the parsers interpret
commands and keywords differently, using different BASICTYPEs may produce
unexpected results.

Related Command

ECLTYPE

“M” UniData interprets commands and keywords consistent with the
McDonnell Douglas or Reality® BASIC parser. Must be enclosed in
quotation marks.

filename DIR-type file containing the program to be compiled. If you indicate
a filename you must also name a program.

program UniBasic program to be compiled.

Parameter Description

BASICTYPE Parameters (continued)
 1-31

BLIST

Syntax

BLIST filename record_ID [([lineM-lineN [option]]]

Description

The ECL BLIST command lists and formats a UniBasic source code program

for display to the terminal screen. When you issue the command without

options, UniData displays the program. For more information about

UniBasic, see Developing UniBasic Applications.

In UniBasic, comment lines begin with *, !, or REM. The BLIST command

converts comments that begin with an exclamation point (!) to a row of

asterisks (*). Two exclamation points (!!) at the beginning of a line produces a

page eject. UniData does not convert comment lines that begin with * or

REM.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename DIR-type file where the source code is stored.

record_ID Designates a record that contains the UniBasic source code
program.

(lineM-lineN Indicates a range of line numbers. You must enter the single
parenthesis and hyphen.

option Formatting operations to be performed or output conditions to be
met. Only one option is allowed on the command line.

BLIST Parameters
1-32 UniData Commands Reference

BLIST Options

The following table lists the BLIST options.

Option Description

A Indents all lines beginning with an asterisk (*) according to the original
starting position.

B The number of leading spaces for the first level of indentation.
UniData indents subsequent levels in multiples of this number.

When you use the B option, UniData prompts for a value. Valid values
are 1 through 5. The default setting is 5. If you enter any other value,
Unidata ignores it and uses the default value.

C Places all comment lines at the left margin, regardless of their original
staring position.

D Output is double-spaced.

E Expands all $INSERT code segments into the listing.

F Prints the file name and program name on the first line of the listing.

K Suppresses the printing of a line of asterisks (*) when the system
encounters an exclamation mark (!) at the beginning of the line.

L Prints a period (.) at each level of indentation.

M Prints line numbers at the left margin.

N The listing scrolls continuously, instead of stopping at each page.

P Directs the listing to the printer that is assigned to your port or to a
printer you assign through SETPTR command options. The default is
to send the list to the display terminal.

X Always used with the E option. Prints a level number for each
$INSERT statement.

BLIST Options
 1-33

Examples

In the following example, a segment of the PHONE_FMT demo program has

been formatted so that lines 11 through 20 start at the left margin:

011: RET_DATA = ““
012: Counter = 1
013: LOOP WHILE Counter <= TotalValues
014: BEGIN CASE
015: CASE COUNTRY = ‘USA’
016: IF LEN(PHONE_NUM<1,Counter>) = 7 THEN
017: RET_DATA<1,-1> = FMT(PHONE_NUM<1,Counter>,”14R ###-####”)
018: END ELSE
...

The next example shows how UniData reformats the program by double

spacing the listing:

:BLIST BP_SOURSE PHONE_FMT (11-20 D

PAGE 1 Uni/Basic Wed Jul 31 11:37:18 2000
PHONE_FMT

011: RET_DATA = ““

012: Counter = 1

013: LOOP WHILE Counter <= TotalValues

014: BEGIN CASE

015: CASE COUNTRY = ‘USA’
016: IF LEN(PHONE_NUM<1,Counter>) = 7 THEN

017: RET_DATA<1,-1> = FMT(PHONE_NUM<1,Counter>,”14R ###-####”)

018: END ELSE
...
1-34 UniData Commands Reference

BLOCK.PRINT

Syntax

BLOCK.PRINT expr

Synonym

BLOCK-PRINT

Description

The ECL BLOCK.PRINT command prints the value of expr to the

printer.UniData prints expr in large uppercase letters and cannot print more

than ten characters on a single line. To depict an initial capital letter, UniData

prints the initial capital letter in a slightly larger point size.

Note: In ECLTYPE U, this command prints to the printer. In ECLTYPE P, it prints
to the terminal screen.

Example

In the following example, using BASICTYPE P, the BLOCK.PRINT command

prints to the terminal:

: BLOCK.PRINT HELLO
#######
#
#
####### ##### # # # #
#
#
#######

:

 1-35

RELATED COMMAND

BLOCK.TERM
1-36 UniData Commands Reference

BLOCK.TERM

Syntax

BLOCK.TERM expr

Synonym

BLOCK-TERM

Description

The ECL BLOCK.TERM command displays the value of expr to the standard

output device, usually the display terminal. UniData displays expr in large

uppercase letters and cannot display more than 10 characters on a single line.

To depict an initial capital letter, UniData displays the initial capital letter in

a slightly larger point size.

Tip: If expr exceeds 255 characters, you can use the UniData continuation character
(\) to enter the excess characters over 255 on the same line. For example, 1. Note

erros...2. Correct 3. Balance ...\10 Record time.

Example

In the following example, UniData displays an expression with the

BLOCK.TERM command:

1 : BLOCK.TERM HELLO
1 # # ####### # # #######
1 # # # # # # #
1 # # # # # # #
1 ####### ##### # # # #
1 # # # # # # #
1 # # # # # # #
1 # # ####### ####### ####### #######
1

:

 1-37

Related Command

BLOCK.PRINT
1-38 UniData Commands Reference

BUILD.INDEX

Syntax

BUILD.INDEX filename {attribute [attribute...] | ALL }

Synonym

BUILD-INDEX

Description

The ECL BUILD.INDEX command activates alternate key indexes and

populates them with keys. If keys are already present in the index, UniData

overwrites them. While the index is being built, users can access the related

data file, but cannot update it.

You must create the alternate key index file with CREATE.INDEX before you

can execute the BUILD.INDEX command. You must also execute

BUILD.INDEX against the index before UniData can access it. This is true

even if the data file is empty.

You cannot build an alternate key index when index updating has been

disabled by the DISABLE.INDEX command.

When BUILD.INDEX completes successfully, UniData sets

@SYSTEM.RETURN.CODE equal to the number of indexes built. A value of

-1 in @SYSTEM.RETURN.CODE indicates an unsuccessful build.

If you specified NO.DUPS when you executed CREATE.INDEX against a

nonrecoverable file, BUILD.INDEX does not populate the index if it

encounters duplicate alternate key values. If you EXECUTE or PERFORM

BUILD.INDEX from a UniBasic program and the command fails because the

data file contains duplicate alternate key values, the UniBasic program

aborts.
 1-39

Using Indexes Created in an Earlier Release

Keep the following in mind when upgrading or using an index that was

created with an earlier release of UniData:

■ On UniData for UNIX, when upgrading from a release earlier than

3.3, you need to rebuild indexes. UniData added a time stamp

feature at Release 3.3.

■ Indexes created at Release 4.1 of UniData for UNIX or Release 3.6 of

UniData for Windows NT are not backwardly compatible. Beginning

with these releases, indexes were no longer compressed.

Tip: Use the UniBasic INDICES function to find out when an index was created.

Parameters

The following table describes each parameter of the syntax:

Tip: Use BUILD.INDEX ALL to build all of the indexes associated with a file at the
same time. You cannot execute multiple BUILD.INDEX commands for individual
attributes simultaneously.

Parameter Description

filename The name of the UniData file that is indexed.

attribute The name of the attribute used as the alternate key. You can build
more than one index at a time.

ALL Builds all indexes associated with filename.

BUILD.INDEX Parameters
1-40 UniData Commands Reference

Example

The following example creates an index on the COMPANY attribute of the

CLIENTS demo file. Then the BUILD.INDEX command activates and loads

keys into the index:

: CREATE.INDEX CLIENTS COMPANY
Alternate key length (default 20): 45
“COMPANY” created

: BUILD.INDEX CLIENTS COMPANY
Quick Build strategy is applied.
One “*” represents 1000 records

Building “COMPANY” ...

130 record(s) processed.

Related Commands

CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX, ENABLE.INDEX,

LIST.INDEX, UPDATE.INDEX
 1-41

BYE

Syntax

BYE

Synonyms

LO, QUIT

Description

The ECL BYE command exits the UniData environment and returns the

cursor to the host operating system prompt.

Example

In the following example, the user executes the BYE command to exit the

UniData environment.

: BYE
%

Related Command

udt
1-42 UniData Commands Reference

CATALOG

Syntax

CATALOG filename [catalog] program [LOCAL | DIRECT] [FORCE]]

[NEWVERSION | newversion]

Description

The ECL CATALOG command copies the compiled object code of a UniBasic

program into a catalog space. By default, UniData catalogs a program

globally and copies it into a subdirectory of udthome/sys/CTLG on UniData

for UNIX, or udthome\sys\CTLG on UniData for Windows Platforms, the

system catalog.

Multiple users can run globally cataloged programs simultaneously —

UniData brings one copy of the program into shared memory.

You can use the CATALOG command in conjunction with a select list of

UniBasic programs.

For more information about UniBasic programming, see Developing UniBasic
Applications. For more information about shared memory and newversion,

see Administering UniData.
 1-43

Parameters

The following table describes each parameter of the syntax.

Parameter Description

catalog The name of a global catalog where UniData copies the object
code, if different from the default CTLG directory.

filename The UniData DIR-type file that contains the program to be
cataloged.

program The UniBasic program that contains object code to be
cataloged.

DIRECT Catalogs the program locally without copying it to the local or
system CTLG directory. Instead, UniData creates an entry in
the VOC file that is a pointer to the directory where the
program resides.

FORCE Overwrites programs in a catalog that have the same name as
filename. You can use the FORCE option in conjunction with the
DIRECT or LOCAL option.

LOCAL Catalogs the program locally and places a copy of it in a
subdirectory of the local CTLG catalog (in the account where
the user is running the program). UniData creates a VOC
pointer to the subdirectory.

Note: UniData creates the CTLG and the subdirectory, if they
do not already exist.

NEWVERSION |
newversion

Replaces the current version of a globally cataloged program in
shared memory with the newly cataloged version. The
UniData background process sbcs controls this activity. (See
the next section, “Modifying Globally Cataloged Programs.”)

Root: You can use this keyword only if you are logged in as
root on UniData for UNIX or as Administrator on UniData for
Windows Platforms.

CATALOG Parameters
1-44 UniData Commands Reference

Modifying Globally Cataloged Programs

In order for multiple users to use a single program at the same time, UniData

retrieves a copy of a globally cataloged program into shared memory. When

you modify a program and recatalog it, any user who began using the

program (the copy in shared memory) before you cataloged the new version

continues to use the copy in shared memory.

Users who run the program after you recatalog it use the new version. When

you return to the ECL prompt, you have access to the new version.

To force users to attach to the new version, use the ECL NEWPCODE

command.

Note: Simply copying the executable to the global catalog space does not update the
version of the program in shared memory.

Calling Programs

You can call a globally cataloged program from the ECL prompt or from any

UniBasic CALL statement in any account. Locally and directly cataloged

programs must be cataloged in each account where they are used.

Pointing to Directly Cataloged Programs

A program that is cataloged using the DIRECT option does not have to be

recataloged when you recompile the program. This is because UniData

creates a pointer in the VOC file that points to the program itself. If you

change the location of the program, however, you must recatalog it to update

the VOC pointer.
 1-45

The following example shows a VOC file pointer for the PSTLCODE_FMT

program in the demo database (PSTLCODE_FMT is called by the virtual

attribute ZIP in both the CLIENTS and ORDERS demo files.) The CT

command lists the record. Notice that the program resides in the

BP_SOURCE directory.

: CATALOG BP_SOURCE PSTLCODE_FMT DIRECT
PSTLCODE_FMT has been cataloged, do you want to overwrite(Y/N)? Y
: CT VOC PSTLCODE_FMT
VOC:

PSTLCODE_FMT:
C
BP_SOURCE/_PSTLCODE_FMT
: LIST CTLG

No records listed.

Tip: To delete a VOC pointer for a cataloged program, use the ECL DELETE or AE
commands, or use UniEntry or the .D command. For more information on UniEntry
and the .D command, see Using UniData.

Examples

The following example lists the contents of the CTLG file in the demo

database. Notice that it is empty. If any of the demo database programs had

been locally or directly cataloged, a copy of the object code would reside in

CTLG.

: LIST CTLG
No record listed.

In the next example, UniData catalogs the compiled object code of the

PSTLCODE_FMT program locally. Afterward, notice the following:

■ The local CTLG directory shows an entry for PSTLCODE_FMT.
1-46 UniData Commands Reference

■ A VOC pointer exists that shows a path to a copy of the program and

shows where the program actually resides (BP_SOURCE).

: CATALOG BP_SOURCE PSTLCODE_FMT LOCAL
: LIST CTLG
LIST CTLG 11:08:04 Jul 28 2001 1
CTLG......

PSTLCODE_F
MT
1 record listed

: CT VOC PSTLCODE_FMT
voc:

PSTLCODE_FMT:
C
/disk1/ud52/demo/CTLG/PSTLCODE_FMT
BP_SOURCE PSTLCODE_FMT

Note: On UniData for Windows Platoforms, the path in the previous example would
be \disk1\demo\CTLG\PSTLCODE_FMT.

The next example directly catalogs the PSTLCODE_FMT program. Notice

that the path to the program has changed from the previous example.

DIRECT cataloging creates a VOC pointer to the object code, but does not

place a copy of it in either CTLG directory.

: CATLOG BP_SOURCE PSTLCODE_FMT DIRECT
: CT VOC PSTLCODE_FMT
VOC:

PSTLCODE_FMT:
C
BP_SOURCE/_PSTLCODE_FMT

Tip: To remove a copy of a program from the local or system CTLG directory, use the
ECL DELETE or DELETE.CATALOG commands.

Related Commands

DELETE.CATALOG, NEWPCODE, newversion
 1-47

CENTURY.PIVOT

Syntax

CENTURY.PIVOT(4-digit year | nn)

Description

Prior to UniData 5.2, any 2-digit year entered from 1 through 29 defaulted to

the next century. For example, UniData interpreted 12/31/29 as December

31, 2029. 1930 was the century pivot date.

You can set your own century pivot date. The century pivot date only applies

to the ICONV function when using the D2 format, not D3 or D4.

The CENTURY.PIVOT ECL command overrides the systemwide century

pivot date defined in the udtconfig file.

Parameters

The following table describes each parameter of the syntax.

You can change this value in one of the following ways:

Parameter Description

4-digit year The 4-digit year defining the century pivot date.

nn The century pivot date code, indicating that the next nn years are in
the next century.

CENTURY.PIVOT Parameters
1-48 UniData Commands Reference

■ Enter a 4-digit year. UniData interprets the first 2 digits as the

century, and the last 2 digits as the year. The last 2 digits of the year

you enter, though 99, are considered to be in the century you specify.

0, through the year you entered -1, are considered to be in the next

century. For example, if the century pivot date is 1950, years 50

through 99 are in the 1900’s, and years 0 through 49 are in the 2000’s.

If the century pivot date is 2000, 0 through 99 are in the 2000’s.

■ Enter a code in the form of nn, indicating that the next nn years are

in the next century. UniData calculates the century pivot date as:

current_year - (100 - nn)

For example, if the current year is 2000 and the century pivot code is

50, the century pivot date is 1950 (2000 - (100 - 50)).

If you enter CENTURY.PIVOT with no options, UniData returns the current

setting for the century pivot date.
 1-49

CHECKOVER

Syntax

CHECKOVER

checkover

Description

The ECL CHECKOVER command and the system-level checkover
command list files in the current account that are in level 2 overflow.

CHECKOVER also reports the number of groups that have overflowed.

Static hashed files are divided into a specific number of groups (the file’s

modulo). When you first write data to the file, UniData stores IDs and data

in the same file block. When the block becomes full of data, a level 1 overflow

occurs and data is written to a second block. If enough records are written to

the same block, the primary keys also overflow — this is level 2 overflow.

Tip: Your system administrator should run this command for each UniData account
and periodically resize files for optimal system performance.

Example

In the following example, UniData indicates that the CTLGTB file has

overflowed. The last line of the display shows the file modulo (mod=17) and

the number of level 2 overflowed blocks (overflow mod=111), including all

level 2 overflowed headers.

: checkover
Current directory is ‘/home/claireg’
Overflowed files are listed in the file U_OVERFLOWED, which is
located in your current directory. Please resize files listed,
then rerun checkover again until no more overflowed files are
identified.
CTLGTB overflowed, mod=17, overflow mod=111
1-50 UniData Commands Reference

CLEAR.ACCOUNT

Syntax

CLEAR.ACCOUNT

Synonym

CLEAR-ACCOUNT

Description

The ECL CLEAR.ACCOUNT command deletes all records from the UniData

system _PH_ and _HOLD_ directories.

Note: The _PH_ directory stores COMO files and phantom log records. The
HOLD directory stores print hold files

Example

In the following example, the CLEAR.ACCOUNT command clears the _PH_

and _HOLD_ directories:

: CLEAR.ACCOUNT
Clear _PH_ directory(Y/N)? Y
Clear _HOLD_ directory(Y/N)? Y
:

 1-51

CLEAR.FILE

Syntax

CLEAR.FILE [DATA] [DICT] filename [FORCE]

Synonym

CLEAR-FILE

Description

The ECL CLEAR.FILE command deletes all records from the data or

dictionary sections of filename, or both the data and dictionary portions. If

you do not stipulate DATA or DICT in the statement, UniData deletes only

the data records. You can clear only files for which you have adequate

permission. After execution of CLEAR.FILE, the empty file remains.

The data portions of multifile and multidir files are defined in the dictionary

as @data.filename. UniData does not remove these pointers when you specify

the DICT keyword to clear a multifile or multidir file. UniData removes all

dictionary records except those beginning with the @ sign.

Without the FORCE option, filename cannot be a synonym.

UniData displays an error message if unable to execute this command due to

the presence of a trigger in the file header. For more information about

UniData triggers, see Using UniData.

Warning: CLEAR.FILE deletes all data records in a file and, for dynamic files,
returns the file to its original modulo and size.

You can use an active select list with this command. You can create a select

list of file names by selecting VOC records of a particular type or by selecting

VOC records by record ID. The following sample UniQuery statements

assume ECLTYPE U.

■ SELECT VOC WITH F1 LIKE “VOC_type”
1-52 UniData Commands Reference

■ SELECT VOC WITH @ID = “filename” [[OR] WITH @ID =

“filename”’...]

UniData handles multipart dynamic files in the following way with this

command:

■ Truncates dat001 and over001 and removes all other part files,

including idx files, at the operating system level.

■ Preserves the minimum modulo for the existing file and uses it as the

modulo for CREATE.FILE logic, and so forth.

■ Uses the current part file.

■ May put new part files on different partitions from the original file

system.

Warning: When you use a select list to clear files, UniData does not prompt for
individual record IDs before deleting all records.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

DATA Deletes the data records in a file.

DICT Deletes the dictionary records in a file.

filename The name of the file to be cleared.

FORCE Deletes the data and/or dictionary records in a file; accepts a
synonym file name.

CLEAR.FILE Parameters
 1-53

Examples

In the following example, UniData deletes all records in the data portion of

the CLIENTS demo file:

: CLEAR.FILE CLIENTS
CLIENTS is cleared.
: LIST CLIENTS
LIST CLIENTS NAME COMPANY ADDRESS CITY STATE ZIP COUNTRY PHONE
PHONE_TYPE 16:32:47 Jun 14 2001 1

No record listed.

:

The next example demonstrates clearing files named in a select list. For this

example, a select list was created that contains the names of the CLIENTS and

ORDERS demo files. When this list is used with the CLEAR.FILE command,

UniData deletes all of the records in the named files. The LIST statements that

follow the example confirm this.

: SELECT VOC WTH F1 LIKE F AND F2 LIKE “INV...”

2 records selected to list 0.

>CLEAR.FILE
Use select list data(Y/N)? Y
Clear INV_FILE(Y/N)? Y
INV_FILE is cleared.
Next file(Y/N)? Y
Clear INVENTORY(Y/N)? Y
INVENTORY is cleared.
: LIST INVENTORY
LIST INVENTORY INV_DATE INV_TIME PROD_NAME FEATURES COLOR PRICE
QTY REORDER DIFF 15:47:27 Jun 29 2001 1

No records listed.

: LIST INV_FILE
LIST INV_FILE INV_DATE INV_TIME PROD_NAME FEATURES COLOR PRICE QTY
REORDER DIFF 15:47:30 Jun 29 2001 1

No records listed.

Related Command

DELETE.FILE
1-54 UniData Commands Reference

CLEAR.LOCKS

Syntax

CLEAR.LOCKS [lock_num]

Synonym

CLEAR-LOCKS

Description

The ECL CLEAR.LOCKS command clears semaphore locks previously

placed by your UniData session using the LOCK, LINE.ATT, and T.ATT

commands. lock_num is the number (0 through 64) of the semaphore lock you

want to clear. If you do not indicate a lock number, UniData releases all locks

you have placed.

Tip: To release locks set by your pid from other terminals or windows, execute
SUPERCLEAR.LOCKS. You must be logged in as root on UniData for UNIX or
Administrator on UniData for Windows Platforms to use that command.

Example

The following example sets a lock, then clears it, for system resource 4.

: LOCK 4
: LIST.LOCKS
 UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME
DATE

1 24775 1172 clair pts/0 semaphor -1 0 4 X 15:03:52 Jun
08
: CLEAR.LOCKS
: LIST.LOCKS

Related Commands

LIST.LOCKS, SUPERCLEAR.LOCKS
 1-55

CLEAR.ONABORT

Syntax

CLEAR.ONABORT

Synonym

CLEAR-ONABORT

Description

The ECL CLEAR.ONABORT command clears the setting of an ON.ABORT

command.

With the ON.ABORT command, you can stipulate that a UniData command

be executed if a subsequent UniBasic program aborts. CLEAR.ONABORT

clears this setting.

For more information about creating and running UniBasic programs, see

Developing UniBasic Applications.

Note: UDT.OPTIONS 105 determines whether to allow ON.ABORT to take effect
from a PERFORMC or EXECUTE statement in UniBasic. For more information,
see the UDT.OPTIONS Commands Reference.

Example

In the following example, UniData sets ON.ABORT to a paragraph called

APOLOGY. Then, UniData clears the setting:

: ON.ABORT APOLOGY
: CLEAR.ONABORT
:

1-56 UniData Commands Reference

Related Command

ON.ABORT
 1-57

CLEAR.ONBREAK

Syntax

CLEAR.ONBREAK

Synonym

CLEAR-ONBREAK

Description

The CLEAR.ONBREAK command clears the setting of the ON.BREAK

command.

The ECL ON.BREAK command determines the actions UniData takes when

a user presses the interrupt key during execution of a UniQuery statement.

After CLEAR.ONBREAK executes, a user who presses the interrupt key

during execution of these commands is returned to the environment from

which he or she executed the command.

Example

After the first command in the following example, UniData executes the

sentence MAIN_MENU when a user presses the break key during execution

of a UniQuery statement. However, the CLEAR.ONBREAK command

removes that setting so that the user is returned to the ECTL prompt after

pressing the break key during execution of the previously mentioned

UniQuery command.

: ON.BREAK MAIN_MENU
: CLEAR.ONBREAK

Related Command

ON.BREAK
1-58 UniData Commands Reference

CLEARDATA

Syntax

CLEARDATA

Description

The ECL CLEARDATA command clears the data stack. After the data stack

is cleared, UniData displays subsequent input requests to the terminal

screen.

The UniData data stack can be loaded by paragraphs or by the UniBasic

DATA command, then they can be read by the UniBasic INPUT commands

or paragraph inline prompts.

Examples

The following example shows a UniBasic program that clears the data stack:

Top of “CLEAR.PROCESS” IN “BP”, 1 line, 19 characters.
001: EXECUTE ‘CLEARDATA’
Bottom.

The next example shows a VOC sentence that creates select lists and loads the

data stack:

 VOC RECORD ID==>LAST_NAMES

0 @ID=LAST_NAMES
1 F1=PA
2 F2=SELECT CLIENTS WITH LNAME LIKE “<<Enter first letter of last name:
>>...”
3 F3=DATA <<Enter first letter of last name: >>
4 F4=RUN BP CLEAR.PROCESS
 1-59

In this example, we execute the LAST_NAMES paragraph more than once. If

the data stack was not cleared by calling CLEAR.PROCESS, the second time

you executed the paragraph, UniData would answer the inline prompt with

input from the first execution.

: LAST_NAMES
Enter the first letter of last name: M

11 records selected to list 0.

: LAST_NAMES
Enter first letter of last name: T

3 records selected to list 0.

:

1-60 UniData Commands Reference

CLEARPROMPTS

Syntax

CLEARPROMPTS

Description

The ECL CLEARPROMPTS command clears all responses to inline prompts

in paragraphs. Use this command within a paragraph after an inline prompt.

Note: Through UniData’s Process Control Language (PCL), you can create
paragraphs that require the user to respond before UniData continues executing the
paragraph. For example, a prompt like “Enter a client number” might appear on the
user’s terminal screen. After the prompt appears, UniData waits for the user to enter
a response. The device UniData uses to do this is called an inline prompt.

For more information on PCL and inline prompting, see Using UniData.
 1-61

clearq

Syntax

clearq qid

Description

The system-level clearq command clears all message queues on the system

of messages destined for processes that are no longer alive. qid represents the

queue number. Use this command at the system prompt, or use the ECL !

(bang) command to execute this command from the colon prompt. For more

information about clearq and clearing message queues, see Administering
UniData.

Note: You must log in as root on UniData for UNIX or Administrator on UniData
for Windows Platforms to execute the clearq command.

Tip: Execute the UniData system-level ipcstat command from the operating system
prompt to get the queue number.
1-62 UniData Commands Reference

CLR

Syntax

CLR

Synonym

CS

Description

The ECL CLR command clears the terminal screen and places the cursor at

the upper left side of the screen in the “home” position.
 1-63

CNAME

Syntax

To change a file name:

CNAME filename,new_filename

CNAME filename TO new_filename

To change a record ID:

CNAME [DICT] filename old_recordID,new_recordID

CNAME [DICT] filename old_recordID TO new_recordID

To change a multilevel part name:

CNAME filename,old_partname TO filename,new_partname

Description

The ECL CNAME command changes the names of files and record IDs. You

can change more than one record ID at a time.
1-64 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Examples

In the following example, UniData changes the name of the INVENTORY

demo file to MERCHANDISE. The LIST command that follows demonstrates

that the old file name no longer exists and that the name of the dictionary file

for INVENTORY also changed.

: CNAME INVENTORY,MERCHANDISE
INVENTORY changed to MERCHANDISE.
: LIST INVENTORY
Not a filename “
 INVENTORY
: LIST DICT INVENTORY
Not a filename :
 INVENTORY

The next example changes two records IDs in the INVENTORY demo file:

:CNAME INVENTORY 53050,NEW53050 56060,NEW56060
53050 changed to NEW53050.
56060 changed to NEW56060.
:

Parameter Description

filename UniData file name. The file can be any hashed file, including
multifiles and multidir files.

new_filename New name assigned to the file.

DICT Dictionary file. Used when changing dictionary file or record
names.

Note: When you use CNAME to change file names, UniData
changes both the dictionary and data file names.

record_ID Record ID in a file. You may change more than one record ID on
the same command line.

new_recordID New name assigned to the record ID.

CNAME Parameters
 1-65

The next example creates a multifile named multi_file and a subfile named

sub_file, and then uses CNAME to change the subfile name to sub_one.

: CREATE.FILE MULTIFILE multi_file,sub_file
modulos for file multi_file,sub_file=4
4 is not a prime number, modulo changed to 5.
Create file multi_file/sub_file, modulo/5,blocksize/1024
Hash type = 0
Added “@sub_file” to DICT multi_file.
: CNAME multi_file,sub_file TO multi_file,sub_one
multi_file,sub_file changed to multi_file,sub_one.
1-66 UniData Commands Reference

cntl_install

Syntax

cntl_install

Description

The system-level cntl_install command reinitializes counters in the

udt.control.file, the log files, the archive files, the system.status.file, the

restart.fileend file, and the restart.newblk file, all located in

/usr/ud60/include. cntl_install executed the log_install command, for use

with recoverable files.

Warning: Since cntl_install reinitializes files needed for recovery, make sure none of
these files are needed before executing cntl_install.

Note: To execute the cntl_install command, you must log in as root.

For more information about the Recoverable File System, see Administering
the Recoverable File System.
 1-67

COMO

Syntax

COMO [ON [HUSH] | OFF] [APPEND | DELETE | LIST | SPOOL [-T]]

record

Description

The ECL COMO command creates a history of a UniData session by sending

user input and system output to a designed record. UniData stores the

COMO record in a UniData DIR-type file called _PH_ within the current

account. UniData stores the COMO record by preceding the record name by

_O.

Tip: Turn off COMO files when you finish recording your UniData session. If you
do not, UniData continues to record input and output until you end the UniData
session. This could cause the _PH_ file to become extremely large. Periodically review
the _PH_ file and delete records that are no longer needed.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

record The name you assign to the COMO session. If you do not indicate a
record name, UniData prompts to name a record or quit the COMO
session.

APPEND Opens an existing COMO record and appends new information to
the end of it.

DELETE Deletes the COMO record from the _PH_ file.

HUSH Directs output to the COMO record, suppressing output to the
terminal.

COMO Parameters
1-68 UniData Commands Reference

Note: When you use the COMO command with APPEND, LIST or SPOOL, record
is the name of the COMO record without the O_ prefix.

LIST Lists the COMO records in _PH_.

OFF Ends a COMO session.

ON Starts a COMO session.

SPOOL Sends a copy of a COMO record to the printer. The COMO session
must be turned OFF.

-T Instructs the SPOOL option to send the output to the terminal, not
the printer.

Parameter Description

COMO Parameters (continued)
 1-69

R

Examples

In the following example, UniData starts a COMO session, lists five records

in the CLIENTS demo data file, and then ends the COMO session:

: COMO ON save
/home/claireg/_PH_/O_save established
: LIST INVENTORY SAMPLE 5
LIST INVENTORY SAMPLE 5 INV_DATE INV_TIME PROD_NAME FEATURES COLO
PRICE QTY REO
RDER DIFF 13:27:06 Jun 11 2001 1
INVENTORY 15001
Inventory Date 08/20/1995
Inventory Time 01:00PM
Product Name Modem
Features 14.4K Internal V34
Color Price Quantity Reorder Difference
N/A $119.00 7486 40 7446

INVENTORY 35000
Inventory Date 07/09/1995
Inventory Time 10:00AM
Product Name Speaker
Features 250W, Direct/reflecting
Color Price Quantity Reorder Difference
Black $198.93 148 50 98
Charcoal $198.93 125 50 75

INVENTORY 15002
Inventory Date 08/12/1995
Inventory Time 07:00AM
Product Name Modem
Enter <New line> to continue...Q
: COMO OFF
/home/claireg/_PH_/O_save closed
:

The next example prints the contents of the COMO file. Notice that you enter

the como session name without the prefix of “O_”:

: COMO SPOOL save
:

Two COMO sessions can run at the same time. When you open first one

session and then another, UniData nests the second session within the first.

The first session is REC_1. The second session, REC_2, is initiated with

REC_1 is still active.
1-70 UniData Commands Reference

Execute SPOOL to display the COMO record for REC_2 to the screen. Notice

that this record consists only of the input and output from the time UniData

established the session for REC_2 until the session ended:

: COMO SPOOL REC_2 -T
:LIST CTLGTB
LIST CTLGTB 09:34:49 Jun 30 2001 1
CATALOG NAME...............

SCHEMA_UPDATE_PRIVILEGES
SCHEMA_LIST_USERS
SCHEMA_VIEW_CHECK
...
Enter <New line> to continue...A
: COMO OFF REC_2

The next example shows the COMO session for REC_1. Notice that UniData

recorded all input before, after, and including the session for REC_2:

: COMO SPOOL REC_1 -T
/home/claireg/demo/_PH_/O_REC_1 established

:LIST VOC WITH F1 LIKE “F”
LIST VOC WITH F1 LIKE “F” 09:34:05 Jun 30 2001 1
VOC........

privilege
INV_FILE
inv
REPORT
ENGLISH.MS
...
Enter <New line> to continue ...Q
: COMO ON REC_2
/home/claireg/demo/_PH_/O_REC_2 established
:LIST CTLGTB
LIST CTLGTB 09:34:49 June 30 2001 1
CATALOG NAME...........

SCHEMA_UPDATE_PRIVILEGES
SCHEMA_LIST_USERS
SCHEMA_VIEW_CHECK
...
Enter <New line> to continue...Q
: COMO OFF REC_2
/home/claireg/demo/_PH_/O_REC2 closed
: COMO OFF REC_1
:

 1-71

COMPILE.DICT

Syntax

COMPILE.DICT filename [attribute]

Synonyms

CD, COMPILE-DICT

Description

The ECL COMPILE.DICT command checks the syntax of a virtual attribute.

If you do not specify attribute, Unidata compiles all virtual attributes in

filename. Compiling creates attributes 8 and 9 in the dictionary record for the

virtual attribute.

UniData compiles a virtual attribute each time it is executed unless it is

compiled in advance by COMPILE.DICT. Compiling in advance may speed

execution.

You must compile virtual attributes before you can execute them in UniBasic

programs (with the CALCULATE, {}, or ITYPE functions).

If COMPILE.DICT is unsuccessful, @SYSTEM.RETURN.CODE is set to -1, if

it is successful @SYSTEM.RETURN.CODE is set to 0.

For more information about virtual attributes, see Using UniData.

Tip: Use AE (Alternate Editor) to display the dictionary record for a compiled virtual
attribute. UniEntry does not display attributes 8 and 9.
1-72 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Examples

The ORDERS demo file contains the virtual attribute GRAND_TOTAL. In the

next example, UniData compiles this virtual attribute:

: COMPILE.DICT ORDERS GRAND_TOTAL
GRAND_TOTAL=PRICE*QTY; SUM(SUM(@1))
Virtual field GRAND_TOTAL is syntactically correct.

The next example lists the dictionary record for the GRAND_TOTAL virtual

attribute. Notice attributes 8 and 9, created by the compile process:

:Note: ü and y are (nonprinting) UniData delimiters. The character used to display
them varies with terminal or printer type.

: AE DICT ORDERS GRAND_TOTAL
Top of “GRAND_TOTAL” in “DICT ORDERS”, 9 lines, 107 characters.
*--: P
001: V
002: PRICE*QTY; SUM(SUM(@1))
003: MD2,$
004: Grand Total
005: 14R
006: S
007:
008: GRAND_TOTALyQTYü6üPRICEü7yPRICE*QTY; SUM(SUM(@1))
009: ORDERS
Bottom.

Parameter Description

filename Name of the file that contains the virtual attribute.

attribute Virtual attribute name.

COMPILE.DICT Parameters
 1-73

CONFIGURE.FILE

Syntax

CONFIGURE.FILE filename [SPLIT.LOAD split_percent] [MERGE.LOAD

merge_percent] [MINIMUM.MODULO modulo] [KEYONELY | KEYDATA]

Synonym

CONFIGURE-FILE

Description

The ECL CONFIGURE.FILE command changes the split load, merge load,

minimum modulo, and/or split/merge type for a dynamic file. A dynamic

file is one that UniData automatically resizes when data is added or removed,

according to the SPLIT.LOAD and MERGE.LOAD percentages.

For more information about dynamic files, see Administering UniData and

Using UniData.

Tip: The default settings for split and merge thresholds are controlled by parameters
in the UniData configuration file (/usr/ud60/include/udtconfig on UniData for
UNIX or \udthome\include\udtconfig on UniData for Windows Platforms). The
defaults are different between KEYONLY and KEYDATA dynamic files. To change
the defaults for your system, edit the lines for SPLIT_LOAD and MERGE_LOAD
(for KEYONLY files) or KEYDATA_SPLIT_LOAD and
KEYDATA_MERGE_LOAD (for KEYDATA files) in the udtconfig file.

Note the following points about CONFIGURE.FILE:

■ If you change the split/merge type, and you do not specify the split

load or merge load in the command line, CONFIGURE.FILE sets the

split and merge loads to the defaults for the split/merge type you

specify. CONFIGURE.FILE displays a message to the screen if the

split and merge load percentages are changed.
1-74 UniData Commands Reference

■ CONFIGURE.FILE changes only the file’s configuration parameters.

This command does not redistribute the records in the file, and does

not split or merge the file. After you run CONFIGURE.FILE, use

ANALYZE.FILE and the guide utility to determine if you should

rebuild your file with REBUILD.FILE.

Parameters

The following table describes each parameter of the syntax.

Examples

The following examples use a copy of the INVENTORY demo file:

: ANALYZE FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 60, Merge load = 40
Split/Merge type = KEYONLY
...

Parameter Description

filename Name of a UniData dynamic file.

SPLIT.LOAD split_percent Load factor at which a group is eligible for
splitting. The default splitting threshold is 60
percent for KEYONLY files and 95 percent for
KEYDATA files.

MERGE.LOAD merge_percent Load factor at which groups are eligible for
merging. The default merging threshold for both
KEYONLY and KEYDATA files is 40 percent.

MINIMUM.MODULO modulo Minimum number of groups in the file.

[KEYONLY | KEYDATA] Split/merge type for the target file. If this is not
specified, CONFIGURE.FILE keeps the
split/merge type of the source file.

CONFIGURE.FILE Parameters
 1-75

In the following example, the split load and merge load are changed:

: CONFIGURE.FILE INVENTORY SPLIT.LOAD 70 MERGE.LOAD 45
:ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 0, blocksize = 1024
Split load = 70, Merge load = 45
Split/Merge type = KEYONLY
...

In the next example, the split/merge mode is changed to KEYDATA:

: CONFIGURE.FILE INVENTORY KEYDATA
Split load has been implicitly changed to 95
Merge load has been implicitly changed to 40

: ANALYZE.FILE INVENTORY
Dynamic File name = INVENTORY
Number of groups in file (modulo) = 19
Minimum groups of file = 19
Hash type = 1, blocksize = 1024
Split load = 95, Merge load = 40
Split/Merge type = KEYDATA
...

Related Commands

ANALYZE.FILE, guide, memresize, REBUILD.FILE
1-76 UniData Commands Reference

confprod

Syntax

confprod

Description

The system-level command confprod displays and updates licensing

information for your system.This command also provides a configuration

code that you must supply to IBM after installing UniData. For more

information about confprod and licensing products on UniData, see Installing
and Licensing UniData Products.

Use this command at the system prompt, or use the ECL ! (bang) command

to execute this command from the colon prompt.

Note: To execute the confprod command, you must be logged on as root on UniData
for UNIX or as Administrator on UniData for Windows Platforms.

You have 30 days to authorize UniData after installation.

Example (UniData for UNIX)

confprod displays the products licensed on your system and the number of

UniData licenses authorized, as illustrated in the following example:

%confprod

For an explanation of the commands listed in the preceding example, see

Installing and Licensing UniData Products.

Example (UniData for Windows Platforms)

confprod displays the products licensed on your system and the number of

UniData licenses authorized, as shown in the next example:
 1-77

Note: Use this command at the MS-DOS prompt.
1-78 UniData Commands Reference

CONNECT

Syntax

CONNECT data.source [option setting [option setting...]]

Description

Use the CONNECT command with UniBasic SQL Client Interface (BCI) to

connect to a data source from a UniData client. You enter the CONNECT

command at the ECL prompt. The CONNECT command enables you to

submit SQL statements to the data source and receive results at your

terminal.

While you are connected to a data source, you can enter any SQL statement

understood by the DBMS engine on the data source, including SELECT,

INSERT, UPDATE, DELETE, GRANT, and CREATE TABLE. ODBC data

sources can use SQL language that is consistent with the ODBC grammar

specification as documented in Appendix C of Microsoft ODBC 2.0
Programmers Reference and SDK Guide.

The CONNECT command runs in autocommit mode: that is, all changes

made to the data source DBMS are committed immediately. Do not use

transaction control statements such as TRANSACTION START,

TRANSACTION COMMIT, and TRANSACTION ABORT when you are

using CONNECT.
 1-79

Parameters

The following table describes each parameter of the syntax.

Command Options

You can specify any option with the CONNECT command. You must specify

a setting for the option.

Parameter Description

data.source The name of the data source to which you want to connect. The
data source is an ODBC data source defined on your system. For
example, on Windows platforms, a data source is defined in the
ODBC Data Source Administrator.

options You can specify any of the following options with the CONNECT
command. See the following section for a detailed description of
each option

■ BLOCK

■ NULL

■ PREFIX

■ UDOUT

■ VERBOSE

■ WIDTH

CONNECT Parameters
1-80 UniData Commands Reference

BLOCK

The BLOCK option defines how UniData BCI terminates input statements.

setting is one of the following:

For more details, see Using the UniBasic SQL Client Interface (BCI).

NULL

The way UniData BCI treats null values coming from the data source

depends on the setting of the NULL_FLAG parameter in the udtconfig file.

Setting Description

ON Enables BLOCK mode. In this mode, you can enter a series of SQL
statements, ending with a ; (semicolon). To terminate the block of SQL
statements, press RETURN immediately after an SQL+ prompt.

OFF Disables BLOCK mode. In this mode if you type a semicolon at the end
of a line of input, UniData BCI terminates your input and sends it to the
data source. This is the default setting.

string Enables BLOCK mode (see ON, above). string must be from 1 to 4
characters. To terminate the block of SQL statements, enter string
immediately after an SQL+ prompt.

BLOCK Option Settings

NULL Flag Description

0 Remote nulls are translated to or from the data source as an empty
string.

1 Remove nulls are translated to or from the data source as the null
value mark.

NULL FLAG Settings
 1-81

The NULL option defines how to display the SQL null value. This option is

only valid if NULL_FLAG is set to 1 in the udtconfig file, located in

/usr/ud60/include. setting is one of the following:

Prefix

The PREFIX option defines the prefix character for local commands. setting is

any valid prefix character. The default prefix character is a period (.). You can

use only the following characters as the prefix character:

Setting Description

SPACE Displays the SQL null value as a blank space.

NOCONV Displays the SQL null value as defined by null value mark setting in
UDTLANGCONFIG.

string Displays the SQL null value as string. The string can be from 1 to 4
characters. By default, null is displayed as the 4-character string
NULL.

NULL Option Settings

Character Description

! Exclamation point.

@ At sign.

Hash sign.

$ Dollar sign.

% Percent.

& Ampersand.

* Asterisk.

/ Slash.

\ Backslash.

: Colon

= Equal sign.

Valid Prefix Characters
1-82 UniData Commands Reference

For more details, see Using SQL Client Interface (BCI).

+ Plus sign.

- Minus sign.

? Question mark.

(Left parenthesis.

) Right parenthesis.

{ Left brace.

} Right brace.

[Left bracket.

] Right bracket.

' Left quotation mark.

‘ Right quotation mark.

. Period.

| Vertical bar.

“ Double quotation mark.

, Comma.

Character Description

Valid Prefix Characters (continued)
 1-83

UDOUT

The UDOUT option specified how to handle output from SELECT statements

executed on the data source. setting is either:

For more details, see Using SQL Client Interface (BCI).

VERBOSE

The VERBOSE option displays extended column information and system

messages. setting is either:

Setting Description

filename Stores output in filename on the client, then displays the output from
filename. If the file does not exist, the CONNECT command creates it.

OFF Displays output from the data source directly on the screen of the
client. This is the default setting.

UDOUT Option Settings

Setting Description

ON Enables verbose mode. In this mode, the name, SQL data type, precision,
scale, and display size are displayed for each column definition when
selecting data from the data source. Error messages are displayed in
extended format that includes the type of call issued, status, SQLSTATE,
error code generated by the data source, and the complete error text.

OFF Disables verbose mode. This is the default setting.

VERBOSE Option Settings
1-84 UniData Commands Reference

WIDTH

The WIDTH option defines the width of display columns. setting is one of the

following:

Setting Description

col#,width Sets the width of column col# to width. Do not enter a space after the
comma. Specify col# as * (asterisk) to set the width of all columns.
width can be from 4 to the maximum line length allowed by your
terminal. The default width for all columns is 10.

T Truncates data that is wider than the width you specify. This is the
default setting.

F Folds data that is wider than the specified width onto multiple lines.

? Displays the current column width settings, and tells whether data
will be truncated or folded.

WIDTH Options Settings
 1-85

CONTROLCHARS

Syntax

CONTROLCHARS {OFF | ON | IGNORE}

The ECL CONTROLCHARS command determines UniData’s response to

user input of nonprinting characters (control or escape sequences) in

response to UniBasic INPUT statements. You can:

■ Allow nonprinting characters.

■ Convert nonprinting characters to tilde (~).

■ Ignore input of nonprinting characters.

Parameters

The following table describes each parameter of the syntax.

Note: UDT.OPTIONS 83 validates the escape character (ASCII code 027) as input
to UniBasic INPUT statements. When this option in ON, UniBasic accepts the
escape character as valid input when CONTROLCHARS is set to OFF and
IGNORE, but screens out other control characters.

Parameter Description

ON Allows nonprinting characters.

OFF Converts nonprinting characters to tilde (~).

IGNORE Does not return nonprinting characters. Screens out the escape
character and most of the ASCII codes between 000-031 and 127-255
inclusive.

IGNORE does not screen out the following ASCII codes within those
ranges:

■ 008—backspace

■ 010 and 013—line feed and carriage return

■ 009—tab

CONTROLCHARS Parameters
1-86 UniData Commands Reference

UDT.OPTIONS 103 determines how UniData treats the TAB character when
CONTROLCHARS is set to off or ignore.

Examples

In the following example, CONTROLCHARS converts nonprinting

characters to tilde (~).

: CONTROLCHARS OFF

In the next example, CONTROLCHARS allows nonprinting control or

escape sequences as user response to the UniBasic INPUT statement:

: CONTROLCHARS ON

In the next example, CONTROLCHARS screens out nonprinting characters:

: CONTROLCHARS IGNORE
 1-87

convcode

Syntax

convcode {filename | directory | -i}

Description

The system-level convcode command converts UniData object files from

Motorola 68000 internal integer format. Format information is embedded

within the file header. This command automatically determines if object files

match the present machine integer format. If the files do not need to be

converted, UniData displays a message that no files were converted.

You can run convcode more than once on a UniData file to convert between

the two formats.

Execute this command from the system prompt, or use the ECL ! (bang)

command to execute convcode from the colon prompt.

Parameters

The following table describes each parameter of the syntax.

Related Commands

convdata, convidx

Parameter Description

filename UNIX name of the file to be processed.

directory Name of a dictionary that holds files, all of which are to be
processed. The convcode command traverses the directory
recursively.

-i Run convcode interactively.

convcode Parameters
1-88 UniData Commands Reference

convdata

Syntax

convdata [-s] {filename [filenameM...filenameN] | [-r] directory}

Description

The system-level convdata command converts UniData hashed data files

from Motorola 68000 internal integer format to Intel 386 internal integer

format. Format information is embedded within the file header. This

command automatically determines if files match the present machine

integer format. If files do not need to be converted, UniData displays a

message that no data files were converted.

You can run convdata more than once on a UniData file.

Execute this command at the system prompt, or use the ECL ! (bang)

command to execute this command from the colon prompt.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The name of a UniData file to convert. To use more than on file name,
separate the names with spaces.

-s Suppresses requests for operator action. Error messages still appear.

-r Processes subdirectories recursively. Used only with the directory
option.

directory The name of a directory that contains file names to be processed by
convdata.

convdata Parameters
 1-89

Example

The following example illustrates an attempt to convert the format for

several files. If the files do not need to be converted, UniData displays

informational messages.

 % convdata -r .
./BP_SOURCE/GPA1: not a Unidata file
./BP_SOURCE/PHONE_FMT: not a Unidata file
./BP_SOURCE/PSTLCODE_FMT: not a Unidata file
./BP_SOURCE/UP_NAME: not a Unidata file
./BP_SOURCE/_GPA1: not a Unidata file
./BP_SOURCE/_PHONE_FMT: not a Unidata file
./BP_SOURCE/_PSTLCODE_FMT: not a Unidata file
./BP_SOURCE/_UP_NAME: not a Unidata file
./BP_SOURCE/AddRecord: not a Unidata file
./BP_SOURCE/DelRecord: not a Unidata file
./BP_SOURCE/EXAMPLE: not a Unidata file
./BP_SOURCE/EXAMPLE_C: not a Unidata file
./BP_SOURCE/EXAMPLE_CPP: not a Unidata file
./BP_SOURCE/EXAMPLE_DELPHI: not a Unidata file
./BP_SOURCE/FndRecord: not a Unidata file
./BP_SOURCE/UpdRecord: not a Unidata file
./BP_SOURCE/_AddRecord: not a Unidata file
./BP_SOURCE/_DelRecord: not a Unidata file
./BP_SOURCE/_EXAMPLE_C: not a Unidata file
./BP_SOURCE/_EXAMPLE_CPP: not a Unidata file
.
.
.
./D_BRI1234: converted
./BRI1234: converted (dynamic file)
41 data file(s) converted
#

Related Commands

convcode, convidx
1-90 UniData Commands Reference

convhash

Syntax

convhash [-T targetdir] [filename1 ... filename(n)]

Description

The system-level convhash command converts static hashed files to dynamic

hashed files. This tool invokes the UniData memresize tool, creating a

dynamic file with the following characteristics:

■ Minimum modulo — the current modulo of the static file

■ Hash type — the current hash type of the static file

■ Split/merge type — KEYONLY (the UniData default)

Note: We recommend that you use the memresize command, rather than the
convhash command, to convert a static file to a dynamic file.

Execute this command at the system prompt, or use the ECL ! (bang)

command to execute this command from the ECL prompt.
 1-91

Parameters

The following table describes each parameter of the syntax.

Examples

In the following example, UniData converts a static hashed file called

CONVHASH.TEST and the subfiles of a multilevel file called MULTI1 to

dynamic files:

% convhash CONVHASH.TEST MULTI1
Converting ‘CONVHASH.TEST’...
‘CONVHASH.TEST’ has been successfully converted
Converting ‘MULTI1/FILE1’...
‘MULTI1/FILE1’ has been successfully converted
Converting ‘MULTI1/FILE2’...
‘MULTI1/FILE2’ has been successfully converted
Converting ‘MULTI1/FILE3’...
‘MULTI1/FILE3’ has been successfully converted
%

Parameter Description

filename1...filename(n) The file or list of files to be converted. You can name
more than one file by separating the file names with
spaces. filename must be a static hashed file or
multilevel file.

-T targetdir Directory in which you want UniData to store the data
portion of the converted file. If you do not name a
directory, UniData stores the new dynamic file in the
same directory as the static file.

Note: If you specify the -T option, the DICT portion of
the file remains in your current working directory. To
access the data, you must edit the VOC pointer in your
current account to add the path name for the data file.

convhash Parameters
1-92 UniData Commands Reference

You can verify the file type for the converted file by displaying file statistics.

The next example uses the ANALYZE.FILE command:

:ANALYZE.FILE MULTI1,FILE3
Dynamic File name = MULTI1,FILE3
Number of groups in file (modulo) = 11
Minimum groups of file = 11
Hash type = 0, blocksize = 1024
Split load = 60, Merge load = 40
Split/Merge type = KEYONLY
Group Keys Key Loads Percent
===
0 19 331 32
1 21 358 34
2 24 407 39
...

When you use convhash to convert a file, no splitting or merging takes place.

This could result in a poorly sized file immediately after convhash. Use guide

or ANALYZE.FILE to determine if you should rebuild your new dynamic

file. The following example shows the output in the GUIDE_ADVICE.LIS

(generated by the guide utility), indicating that a dynamic file should be

rebuilt.

% pg GUIDE_ADVICE.LIST
FAMILY_FILE1
Management advice:
Running REBUILD.FILE may improve performance
for access to the file. This conclusion was reached
for the following reasons:
- File is in level two overflow.
- File has 101 groups over split load.
Files processed: 1
Errors encountered: 0
%

 1-93

convidx

Syntax

convidx [-r] [-s] [filename [filenameM...filenameN]|directory
[directoryM...directoryN]

Description

The system-level convidx command converts UniData index files from

Motorola 68000 internal integer format to Intel 386 internal integer format.

Format information is embedded within the file header. This command

automatically determines if files match the present machine integer format.

If files do not need to be converted, UniData displays a message to that effect.

You can run convidx more than once on a UniData file.

Static index files have a prefix of X_. Dynamic index files are named idx001,

idx002,.... See the Using UniData manual for more information about working

with index files and alternate key indexes.

Use this command at the system prompt, or use the ECL ! (bang) command

to execute this command from the ECL prompt.
1-94 UniData Commands Reference

Parameters

Examples

In the following example, UniData attempts to convert the index file for the

CLIENTS demo file. CLIENTS is a static file, so the index file has a X_ prefix.

Since the index is already converted, UniData displays informational

messages instead:

% convidx -r X_CLIENTS
X_CLIENTS: already been converted
0 index file(s) converted.
%

The next example shows an attempt to convert two dynamic file index files.

Since they have already been converted, UniData displays informational

messages instead:

% convidx -r INVENTORY ORDERS
INVENTORY/idx001: already been converted
ORDERS/idx001: already been converted
0 index file(s) converted.
%

Related Commands

convdata, convcode

Parameter Description

-r Processes subdirectories recursively. Converts all index files in
directory.

-s Suppresses system messages.

filename The index to be converted. Separate multiple index names with
spaces.

directory The UniData DIR-type file that contains indexes to be converted.
Separate directory names with spaces.

convidx Parameters
 1-95

convmark

Syntax

convmark [-t] language_group_ID [[path1 [path2...]]

convmark [-t] -s old_value [-d new_value][[path1 [path2...]]

Description

The system-level convmark command searches for and converts ASCII

values in UniData files. new_value must be one that is not contained in the file

to be converted.

Based on the option selected, UniData does one of the following:

■ Displays the number of occurrences of a particular ASCII value.

■ Counts the number of UniData delimiters in files.

■ Converts a single ASCII character (ASCII values 128 – 255 only).

■ Converts the UniData delimiters for your language group. (Be sure

you have changed the language group with the system-level

command udtlangconfig. For instructions, see UniData International.)

convmark Constraints

You cannot use the convmark command to convert in the following

conditions:

■ If your source file contains the new ASCII values the ones to which

you are attempting to convert no data in the file is converted.

UniData instead returns a message indicating that the data already

contains the new mark, and returns the cursor to the ECL prompt.

This does not mean that the file has been converted or that it does not

require conversion. You must review and change the records

manually.
1-96 UniData Commands Reference

■ On UniData for UNIX, directories indicated by path1, and so forth,

cannot contain any UNIX links (created with the UNIX ln

command). If they do, convmark produces an error message and

aborts.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-t For use in test mode. Returns the number of files in the
specified directory that need to be converted, but does not
convert them. You can combine -t with any other options.

language_group_ID The language group ID is made up of the ASCII values
that represent the record mark, the cursor control escape
sequence, and the null value for that language group:

■ 159/130/129 French, Japanese, and English

■ 255/192/129 English

path 1 [path2...] The full path to files to convert. May be for a directory (all
files are converted) or for a file name. On UniData for
UNIX, these directories cannot contain UNIX links.

-s old_value Used without new_value, counts the occurrences of
new_value. Used with new_value, converts from old_value.
Must be a single ASCII value from 128 through 255.

-d new_value Replacement value. Must be a single ASCII value from 128
through 255.

Note: If new_value already appears in the data, UniData
does not execute the conversion. Instead, an informational
message appears and the cursor returns to the
environment from which you executed convmark.

convmark Parameters
 1-97

Examples

In the following example, UniData counts the occurrences of ASCII value 254

in the ORDERS demo file:

: convmark -s 254 ORDERS
ORDERS: number of value 254: 1152
1 UniData file(s) need conversion.
%

In the next example, the -t option counts ASCII value 254 in all files in the

current directory and in all subdirectories, but does not convert those

characters. If the user in this example had not included the -t option, the

command would have converted all ASCII values 254 to 129 (the null value

in the English language group):

% convmark -t -s 254 -d 129
./BP/GREETING: not a UniData file
./BP/_GREETING: not a UniData file
./BP/TEST_PROG: not a UniData file
./BP/_TEST_PROG: not a UniData file
./BP/CLEAR.PROCESS: not a UniData file
./BP/_CLEAR.PROCESS: not a UniData file
./BP_SOURCE/GPA1: not a UniData file
./BP_SOURCE/PHONE_FMT: not a UniData file
./BP_SOURCE/PSTLCODE_FMT: not a UniData file
./BP_SOURCE/UP_NAME: not a UniData file
./BP_SOURCE/_GPA1: not a UniData file
./BP_SOURCE/_PHONE_FMT: not a UniData file
./BP_SOURCE/_PSTLCODE_FMT: not a UniData file
./BP_SOURCE/_UP_NAME: not a UniData file
./CATEGORIES: no conversion is need
./CLIENTS: need conversion.
./COURSES: need conversion.
./CUSTOMER: need conversion.
./D_BP: need conversion.
./D_BP_SOURCE: need conversion.
./D_CATEGORIES: need conversion.
./D_CLIENTS: need conversion.
...
40 UniData file(s) need conversion.

In the following example, convmark converts all ASCII values 129 (the null

value in the English language group) to 193.

The following is a display of record 40008 in the demo INVENTORY file,

previously modified by the addition of the null value to each multivalued

and multi-subvalued attribute. Notice lines 5 – 8.
1-98 UniData Commands Reference

Note: The UniData-supplied editor AE is used here, and the user has pressed Shift-
6 to display nonprinting characters.

...
*--: T
Top.
*--: P
001: 10026
002: 53760
003: Telephone
004: Cordless 9 # Memory
005: Burgundy^253Tan^253Black^253White^253^129
006: 350^253200^253300^253148^253^129
007: 6992^2536992^2536992^2536992^253^129
008: 70^25370^25370^25370^253^129
Bottom.
*--:

Next, after terminating the UniData session, the user changes directories to

udthome, and executes convmark to accomplish the conversion:

% convmark -s 129 -d 193 /home/carolw/demo/INVENTORY
WARNING: All 129’s in data of the given file(s) will be
replaced with 193. Are you sure (Y/N) ? y

/home/carolw/demo/INVENTORY: converted
1 UniData file(s) were converted successfully.

Here is the same record, 40008, redisplayed to show the converted characters:

ASCII 129 has been converted to 193 for each multivalued and multi-

subvalued attribute (lines 5 through 8):

...
*--: T
Top.
*--: P
002: 53760
003: Telephone
004: Cordless 9 # Memory
005: Burgundy^253Tan^253Black^253White^253^193
006: 350^253200^253300^253148^253^193
007: 6992^2536992^2536992^2536992^253^193
008: 70^25370^25370^25370^253^193
Bottom.
*--:

Related Command

udtlangconfig
 1-99

CONVERT.SQL

Syntax

CONVERT.SQL [filename][length] [CHECKONLY | FORCE] [PUBLIC

[privilege]]

Synonym

CONVERT-SQL

Description

The ECL CONVERT.SQL command checks the UniData file for conformance

to ODBC’s requirements. If it detects an inconsistency, UniData responds

depending upon the CONVERT.SQL option selected. If you do not use the

CHECKONLY, FORCE, or PUBLIC option, UniData displays each file and

attribute name that does not conform to ODBC requirements, suggests an

acceptable name, and waits for you to enter an acceptable name or press

ENTER to accept the generated name.

Note: To execute the CONVERT.SQL command, you must be the owner of the file
or a system administrator or another user with root access on UniData for UNIX or
as Administrator on UniData for Windows Platforms.

In the conversion process, UniData takes the following actions:

■ Checks the name of the file being converted. If filename is ODBC-

compliant, UniData uses this name for the file. If filename is not

ODBC compliant, UniData creates a new, duplicate dictionary file

with a compliant name for use by ODBC/UniData SQL.

■ Checks attribute specifications for missing value code and format

specification.
1-100 UniData Commands Reference

■ Creates synonyms (also called aliases) in the dictionary for attribute

names that do not conform to ODBC’s conventions. For each

noncompliant attribute name, UniData creates or adds an entry in

the attributes @SYNONYM and @ORIGINAL to link the new

compliant attribute name with the original attribute name.

■ Adds conforming names of the converted files to the UniData SQL

privilege table.

CONVERT.SQL does not:

■ Change the data portion of files being converted.

■ Create 1NF schema (1NF views or subtables); therefore, converted

tables are not necessarily accessible through UniDesktop tools. For

more information on UniData ODBC, see Developing UniData ODBC
Applications.

Note: Converted files are called base tables.

For a table to be accessible through UniData SQL, it must meet the following

conditions:

■ The table and attribute name must:

■ Not be longer than 30 characters.

■ Be made up of alphabetic characters, numbers, and special

characters: _, @, #, $; the first character must be alphabetic. Be

unique among table, subtable, and view names, and UniData

SQL reserved words.

■ If an attribute name is part of an association, the association name

must exist in the dictionary as a PH attribute.

■ An association may not contain a singlevalued (S) attribute.

For information about using UniData SQL, see Using UniData SQL.
 1-101

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename Specifies the name of the file to convert. If filename is
omitted, CONVERT.SQL converts all file names
contained in the active select list, if one exists.

length Specifies the length of the input file name (maximum
is 30 characters).

CHECKONLY | FORCE CHECKONLY reports the problems found in the
conversion process, but does not make any changes.

FORCE makes necessary file changes during the
conversion process and displays changes on the
terminal. UniData does not prompt for user input.

PUBLIC Automatically grants the privilege specified in
privilege to all users. If PUBLIC is specified, but
privilege is omitted, privilege defaults to ALL.

privilege Specifies the privileges to grant. You may use the
following options: ALL, INSERT, UPDATE, DELETE,
or SELECT. For further information, see the “Granting
Privileges” section in Using UniData SQL.

CONVERT.SQL Parameters
1-102 UniData Commands Reference

Example

In the following example, UniData converts a file named test.fil so it can be

accessed in UniData SQL. During the conversion process, the system

prompts the user for information. User responses appear in boldface type.

: CONVERT.SQL test.fil
default name length 30 is used
checking file ‘test.fil’ ...
single-valued field ‘NUM-FLD’ will be dropped from association
‘NUM-DOLLAR’
association ‘NUM-DOLLAR’ has no corresponding PH field
PH field ‘NUM-DOLLAR’ has been created
invalid FMT ‘’ in field ‘account_no’
enter new FMT [number[R10R
FMT spec of field ‘account_no’ has been changed to ‘10R’
field name ‘@ID’ will be changed to ‘ID’
enter <CR> to accept, or enter a new synonym:
field name ‘NUM-FLD’ will be changed to ‘NUM_FLD’
enter <CR> to accept, or enter a new synonym:
field name ‘dollar$’ will be changed to ‘dollar_’
enter <CR> to accept, or enter a new synonym:
invalid FMT ‘T’ in field ‘@CHAR%’
enter new FMT [number[R10T
FMT spec of field ‘@CHAR%’ has been changed to ‘10T’
field name ‘@CHAR%’ will be changed to ‘CHAR_’
enter <CR> to accept, or enter a new synonym: CHAR_FLD
invalid FMT ‘T’ in field ‘_FLDNAME’
enter new FMT [number[R8T
FMT spec of field ‘_FLDNAME’ has been changed to ‘8T’
field name ‘_FLDNAME’ will be changed to ‘FLDNAME’
enter <CR> to accept, or enter a new synonym:
...
synonym ‘ID’ has been created for field ‘@ID’
synonym ‘NUM_FLD’ has been created for field ‘NUM-FLD’
synonym ‘dollar_’ has been created for field ‘dollar$’
synonym ‘CHAR_FLD’ has been created for field ‘@CHAR%’
synonym ‘FLDNAME’ has been created for field ‘_FLDNAME’
synonym ‘NUM_DOLLAR’ has been created for field ‘NUM-DOLLAR’
7 conversions have been made to dictionary
file name ‘test.fil’ will be changed to ‘test_fil’
enter <CR> to accept, or enter your own synonym name:
file synonym ‘test_fil’ has been added to VOC
1 file has been converted
:

 1-103

COPY

Syntax

COPY FROM [DICT] filename1 [TO [DICT] filename2][id [...]|id, new_id
[...] | ALL] [DELETING | OVERWRITING | SQUAWK]

Description

The ECL COPY command copies individual records from one file to another

or within the same file. If you include the DICT keyword, UniData copies

dictionary records.

The dictionary and data files must already exist before you copy records into

them. See CREATE.FILE for instructions on creating UniData dictionary and

data files.

UniData displays an informational message if unable to execute a

COPY...DELETING statement due to the presence of a trigger. For more

information about UniData triggers, see Using UniData or Developing
UniBasic Applications.

Warning: You cannot use system-level commands (such as cp and tar) to copy
UniData recoverable files while UniData is running. If you use these commands on
recoverable files, you could corrupt data.

In ECLTYPE P, the COPY command has the following syntax: COPY filename

[*]

Notice the following:

■ The FROM, DELETING, OVERWRITING, and SQUAWK keywords

are not valid.

■ A left (open) parenthesis must proceed a file name.

You do not enter a target file name; UniData prompts for it. The optional

asterisk copies all records.
1-104 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename A UniData file. filename must be a record in the VOC file. filename1
and filename2 can refer to the same file. If you are making a copy of
a record in the same file, do not use the TO keyword.

DICT The Dictionary file.

FROM Copies records from a source file, filename1.

TO Copies records to a target file, filename2.

id The record ID to be copied. You can copy more than on record ID
at the same time by separating multiple record IDs with a space.

Note: Remember, when you copy records from a dictionary file,
the record ID is the dictionary attribute name.

new_id The new name you assign to a record ID you are copying.

ALL Copies all records from the source file to the target file.

DELETING Deletes records from the source file after they are copied to the
target file.

OVERWRITI
NG

Overwrites any record of the same name already present in
filename2.

Warning: UniData does not prompt to confirm that you intend to
overwrite the record.

SQUAWK Lists the records being copied to the display terminal.

COPY Parameters
 1-105

Copying the Dictionary

After you copy a UniData file, you may want to copy the dictionary portion

of the file you have copied to the new dictionary. If you created a new file to

copy records to, the dictionary portion of the new file most likely contains the

@ID record only. A UniQuery statement executed against the new file may

look something like the following example, indicating that you have not

copied the dictionary attributes.

: LIST MERCHANDISE ALL
LIST MERCHANDISE ALL 12:07:32 Jun 21 1999 1
MERCHANDISE
55040
51090
11020
...
1-106 UniData Commands Reference

When you copy the dictionary records, be sure to specify the DICT parameter

with the target file name in the COPY statement. If you do not, UniData

copies the dictionary records into the data portion of the file. The following

example illustrates the results of a COPY statement when the DICT

parameter with the target file name was not specified. It also illustrates

copying dictionary records from the original file to the new file.

:COPY FROM DICT INVENTORY TO MERCHANDISE ALL
18 records copied
:LIST MERCHANDISE
LIST MERCHANDISE 10:29:29 May 29 1999 1
MERCHANDISE
PROD_NAME
13004
54030
40014
52060
40015
13005
36000
13006
50090
51040
DIFF
11110
INV_DATE
.
.
.
: COPY FROM DICT INVENTORY TO DICT MERCHANDISE ALL
@ID exists in MERCHANDISE, cannot overwrite
17 records copied
: LIST MERCHANDISE
LIST MERCHANDISE 10:32:29 May 29 1999 1
MERCHANDISE
52060
40015
13005
36000
13006
50090
51040
11110
...
 1-107

ECLTYPE U Examples

In the following example, UniData copies a dictionary record (INV_DATE) to

a new name (MORE_INV) in the same file. Notice that the TO keyword does

not appear on the command line. It is not necessary, since the record is being

copied from the source file to the source file.

: COPY FROM DICT INVENTORY INV_DATE, MORE_INV
1 records copied
:

The next example copies a dictionary record to a different file and gives it a

new name. In this example, the TO keyword is required, since the target file

differs from the source file.

: COPY FROM DICT INVENTORY TO DICT ORDERS PROD_NAME, ITEM_NAME
1 records copied
:

The next example demonstrates use of the SQUAWK keyword to display

informational messages to the terminal during the copy process. The

OVERWRITING keyword overwrites existing records of the same name

without user verification:

: COPY FROM CLIENTS TO ORDERS 10011, C-10011 10013, C-10013 10015,
C-10015 OVER-WRITING
SQUAWK
10011 copied to C-10011
10013 copied to C-10013
10015 copied to C-10015
3 records copied
:

The following example copies ORDERS record 838 to record 10001:

: COPY FROM ORDERS 838, 1000
1 records copied

ECLTYPE P Examples

The following example illustrates a simple COPY statement. UniData makes

a second copy of a record in the CLIENTS demo file:

: COPY CLIENTS 9999
TO: X-9999
1 records copied
:

1-108 UniData Commands Reference

In the next example, UniData copies a record from CLIENTS demo file to the

ORDERS demo file. Notice UniData prompts for the target file name with

TO:, and that the user proceeds the file name with a left parenthesis.

: COPY CLIENTS 10011
TO: (ORDERS
1 records copied
:

The next example shows a COPY statement that copies the dictionary record

from the CLIENTS file to the dictionary of ORDERS file. The new dictionary

record is called DISTRIBUTION.

: COPY DICT CLIENTS ZIP_CODE
TO: (DICT ORDERS DISTRIBUTION
1 records copied
:

In ECLTYPE P, you can display the all of the records in a file to the terminal

by including an asterisk (*) and pressing ENTER at the TO: prompt, as shown

in the following example:

COPY CLIENTS *
TO:
9999:
Paul
Castiglione
Chez Paul
45, reu de Rivoli
Paris
75008
France
3342425544y3342664857
WorkyFax
10034:
Fredrick
Anderson
Otis Concrete
854, reu de Rivoli
Paris
...
 1-109

CREATE.FILE

Syntax

CREATE.FILE [DICT | DATA] [DIR | MULTIFILE | MULTIDIR] filename
[,subfile] [modulo [,block.size.multiplier]] [TYPE hashtype] [DYNAMIC

[KEYONLY | KEYDATA] [PARTTBL part_tbl]] [RECOVERABLE]

[OVERFLOW]

Note: The PARTTBL and RECOVERABLE options are available on UniData for
UNIX only.

Synonym

CREATE-FILE

Description

The ECL CREATE.FILE command creates a UniData file. If you do not

indicate the kind of file to create (such as dictionary, data, or directory),

UniData creates filename (both the data and dictionary files) as a static

hashed file. If an operating system-level file of the same name already exists

in the target account, CREATE.FILE fails.

See Administering UniData for more information on UniData file types, such

as multifiles and part files.

Tip: The name you choose for a file must not exceed the length supported by your
operating system. To view your operating system limitation, execute the ECL LIMIT
command. The maximum operating system file name limit is the value of
U_MAXFNAME. After you create the file, you can create a longer synonym in your
VOC file to be used in UniData. For information about creating file name synonyms,
see SETFILE.
1-110 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Parameter Description

block.size.multiplier The size, expressed as a multiplier, of each group in a
hashed file. If you specify a block size multiplier of 0,
UniData creates 512-byte groups. A block size multiplier
of 1 represents 1024 bytes, 2 represents 2048 bytes, and so
on. The maximum block size multiplier is 16. See
“Estimating the File Size” in this section. If you specify a
block size multiplier greater than 16, 16 is used.

filename The name of the UniData file to be created.

hashtype UniData supports two proprietary hashing algorithms
(hash type 0 and hash type 1), which determine what data
groups contain each record. The default hash type for
both static files and dynamic files is 0. See Administering
UniData for more information about the UniData hashing
algorithms.

modulo Number of groups allocated to filename. When hash type
is 0, modulo must be a prime number. If the number you
choose is not prime, UniData automatically increases the
number to the nearest prime number. See “Estimating the
Modulo” in this section.

part_tbl The path and file name for a UNIX text file to be used as
the part table for a dynamic hashed file. UniData copies
the part table into the directory with the dynamic file.

This option is only supported on UniData for UNIX.

Note: UniData distributes part files across file systems by
using ASCII files called part tables.

,subfile Name of a subfile to be created when you use the
MULTIFILE or MULTIDIR options. You must separate
filename and subfile with a comma.

DATA Creates only the data portion of filename.

DICT Creates only the dictionary portion of filename. All
UniData dictionary files are static hashed files. UniData
prefixes dictionary file names with D_.

CREATE.FILE Parameters
 1-111

DIR Creates a file whose data portion is a directory, rather
than a UniData hashed file. Records in a DIR-type data
file are text and data files.

Note: The DYNAMIC, KEYONLY, KEYDATA, PARTTBL,
TYPE, and RECOVERABLE keywords are invalid for a
DIR-type file.

DYNAMIC Creates a dynamic hashed file. Dynamic files resize based
on split and merge parameters.

For more information on UniData dynamic files, see
Using UniData or Administering UniData.

KEYONLY Used only with the DYNAMIC keyword. Set the
split/merge type for a dynamic file to KEYONLY,
meaning that the load factor in each group is based on
keys and pointers only. This is the default split/merge
type.

KEYDATA Used only with the DYNAMIC keyword. Set the
split/merge type for a dynamic file to KEYDATA,
meaning that the load factor in each group is based on
keys and pointers plus data.

For more information about split/merge types, see
“Special Considerations for Dynamic Files” in this
section.

MULTIDIR Creates a multilevel directory file, consisting of multiple
DIR-type files (subfile) under a directory (filename). The
VOC entry for a MULTIDIR file is type LD.

MULTIFILE Creates multiple DATA-type hashed files (subfile) under a
directory (filename). The VOC entry is type LF. If you do
not specify a subfile name, UniData creates a hashed file
and names both it and the directory filename.

PARTTBL Used only with the DYNAMIC keyword. Copies the
specified text file (part_tbl) into the dynamic file directory.
The text file you specify with the PARTTBL option must
exist. The contents of this file are copied into the dynamic
file directory in a file named parttbl.

This option is supported on UniData for UNIX only.

Parameter Description

CREATE.FILE Parameters (continued)
1-112 UniData Commands Reference

Note: On UniData for UNIX, when you create a DIR, MULTIDIR, or MULTIFILE,
UniData attempts to set permissions on the UNIX directory to 775 (rwxrwxr-x).
These permissions allow users in the same UNIX group as the file owner add, modify,
and delete records, subdirectories, and subfiles. UniData can set these permissions
only if your umask allows. If your umask is more restrictive than 003, the umask
rather than UniData determines the permissions setting for a DIR, MULTIDIR, or
MULTIFILE.

RECOVERABLE Creates a recoverable file. You can define only the
following types of files as recoverable:

■ Static hashed file or multilevel subfile

■ Dynamic hashed file or multilevel subfile

This option is supported on UniData for UNIX only.

For more information about recoverable files, see
Administering the Recoverable File System.

TYPE hashtype Hashing algorithm for the file. Hash type is 0 or 1. The
default hash type for static and dynamic files is 0.

OVERFLOW If specified, UniData creates a dynamic file with an
overflow file for each dat file. For example, over001
corresponds to dat001, over002 corresponds to dat 002,
and so forth. When the file is cleared, UniData maintains
this overflow structure.

Parameter Description

CREATE.FILE Parameters (continued)
 1-113

Estimating the Modulo

UniData blocks a hashed file into a specific number of groups called the

modulo. The best number of groups (modulo number) depends on variable

factors, such as record size and length of the primary key. When you execute

CREATE.FILE, the modulo and block size multiplier that you enter

determine the size of the file. It is important to create a file that is adequate in

size to store data efficiently. If you create a static file with only a few groups,

the file can overflow quickly, which causes slow performance. When you

create a dynamic hashed file, the modulo increases automatically when

records are added to the file. However, you should still calculate the best

initial modulo before you create the file. The following steps describe how to

estimate a modulo number for a static hashed file (or initial modulo for a

dynamic hashed file):

1. Estimate an average record size. The average record size (in bytes) is

the sum of the size of the primary key, an estimated record size, and

the integer 9. Suppose you’re designing a file with the following

characteristics:

■ Primary key Primary key is a 10-character field.

■ Estimated record length – There are 20 data attributes that are

each 10 characters in length, for a record length of 200.

Therefore, the average record size is: 10 + 200 + 9 = 219 bytes.

Note: If you are planning to resize an existing file or copy records from an existing
file, you can use the FILE.STAT command (in ECLTYPE U) to display average
number of bytes in a record and average number of bytes in a record ID. For an
existing file, compute the average record size as the sum of the average number of
bytes in the record, the standard deviation from average, the average number of bytes
in the record ID, and 9 for overhead.

2. Compute the number of records per block as:

(Block size in bytes - 32) / Average record size

Note that the pointer array in each block requires 32 bytes. In the

example, if you want to use 1024-byte blocks, then the number of

records per block is (1024 -32) / 219, or 4.5.

3. Divide the number of records in the file by the number of records per

block to compute the calculated modulo:

1000 records / 4.5 records per block = 222 blocks
1-114 UniData Commands Reference

4. Add 10 –15% for optimum hashing, bringing the calculated modulo

to 255.

5. Round this number up to the nearest prime number. This becomes

the modulo for the file. For this example, the nearest prime number

is 257. Use the ECL PRIMENUMBER command to find the prime

number.

Estimating the File Size

UniData determines the size for a file by adding 1 to the modulo (for the

group that contains the file header) and multiplying that sum by the block

size.

Block size is the product of a block size multiplier (block.size.multiplier)

times 1024. The block size multiplier is an integer between 0 and 16 inclusive.

Except for 0, these integers represent multiples of 1,024 bytes. If you use 0 for

block.size.multiplier, UniData interprets that as 512. If you use a number

greater than 16, UniData uses 16K.

Note: A recoverable file must have a block size multiplier of at least 1 (1,024 bytes).
A 512-byte block size is not supported.

For efficient I/O performance, we recommend that you use only the values of 0, 1, 2,
4, 8, and 16 for the block.size.multiplier. Do not use odd numbers for block sizes.

Special Considerations for Dynamic Files

If you are creating a dynamic hashed file, selecting an appropriate starting

(minimum) modulo is critical to the future efficiency of the file. All

subsequent splitting and merging operations are affected by the initial

modulo. Starting with a modulo that is very small (for instance, 3) produces

inefficient hashing and splitting as the file grows. Starting with a modulo that

is very large produces a file that may take up more disk space than needed,

but that impact is better than the slow performance and inefficiency that

results if the starting modulo is too small.

When you create a dynamic file, estimate the initial modulo using the same

procedure you would use to estimate the modulo for a static file.
 1-115

KEYDATA Files and Block Size

If you are creating a KEYDATA dynamic file, make certain the block size is

large with respect to the record length. We recommend that you choose a

block size that is at least 10 times the average record length. Load factor in a

KEYDATA file is based on the percentage of the space in each block that is

occupied by both keys and data. If the block size is not large with respect to

record size, the file will occupy a large amount of space and much of that

space will be unused.

KEYONLY Files and Block Size

If you are creating a KEYONLY dynamic file, make certain the block size is

large with respect to the average key length. We recommend that you choose

a block size that is at least 10 times the average key length. Load factor in a

KEYONLY file is based on the percentage of the space in each block that is

occupied by keys and pointers. If the block size is not large with respect to the

average key length and the hashing is not even, certain groups will be split

over and over, resulting in an inefficient distribution of keys.

Example

In the following example, UniData creates a dynamic file. Notice the

informational message related to modulo number. Also, notice that UniData

creates both data and dictionary files, by default.

:CREATE.FILE CONTRACTS 4,2 DYNAMIC
4 is not a prime number, modulo changed to 5.
Create file D_CONTRACTS, modulo/1,blocksize/1024
Hash type = 0
Create dynamic file CONTRACTS, modulo/5,blocksize/2048
Hash type = 0
Split/Merge type = KEYONLY
Added “@ID”, the default record for UniData to DICT CONTRACTS.
:

Related Commands

CLEAR.FILE, DELETE.FILE
1-116 UniData Commands Reference

CREATE.INDEX

Syntax

CREATE.INDEX filename attribute1 [attributeM...attributeN] [NO.DUPS]

[NO.NULLS]

Synonym

CREATE-INDEX

Description

The ECL CREATE.INDEX command creates an index file for a UniData file

and creates alternate key indexes for data attributes you indicate. The index

file stores all of the alternate key indexes created on a file.

When you create alternate key indexes, you can screen out empty strings or

duplicate values, or both (for nonrecoverable files).

If an alternate key index exists for the attribute you are indexing, UniData

displays a message indicating that you cannot create more than one index for

the same attribute (location).

UniData stores index files in two places:

■ Static files – The UniData account directory. Static index files have a

X_ prefix.

■ Dynamic files – The UniData file directory. Dynamic index files are

named idx001, idx002,....

The CREATE.INDEX command does not populate the alternate key index. To

add keys to the index, use the ECL BUILD.INDEX command.

When CREATE.INDEX completes successfully, @SYSTEM.RETURN.CODE

is set to the number of indexes created. If an error occurs,

@SYSTEM.RETURN.CODE is set to -1.
 1-117

IBM recommends that alternate key length be as large as the longest attribute

being indexed to help prevent alternate key overflow. For example, if the

indexed attribute is a virtual field that concatenates CITY (35 characters),

STATE (2 characters), and ZIP (10 characters), the alternate key length should

be 47.

Tip: Use the LIST.INDEX command to display a list of alternate key indexes for a
UniData file.

Using Indexes Created in an Earlier Release

Keep the following in mind when upgrading or using an index that was

created with an earlier release of UniData:

■ When upgrading from a release earlier than 3.3, you need to rebuild

indexes. UniData added a time stamp feature at Release 3.3.

■ Indexes created at Release 4.1 of UniData for UNIX or Release 3.6 of

UniData for Windows NT are not backwardly compatible. Beginning

with these releases, indexes were no longer compressed.
1-118 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename Name of a UniData data file to be indexed.

attribute Data attribute on which to base an alternate key index. You can
name multiple data attributes to create multiple alternate key
indexes simultaneously. You cannot create multiple alternate key
indexes on the same location (attribute).

NO.DUPS For nonrecoverable files, the parameter blocks creation of
duplicate keys in an alternate key index. If UniData encounters
duplicate data values when building the index or writing a record,
the operation terminates. Here is a summary of the effect of
NO.DUPS on other commands:

BUILD.INDEX — If the nonrecoverable file contains duplicate
values in the alternate key attribute, UniData displays an error
message and does not build the index. UniData allows duplicates
in indexes for RFS files.

(UniBasic) WRITE/WRITEU/WRITEV/WRITEVU — For
nonrecoverable files, the ON ERROR clause executes if you
attempt to write a record that contains a duplicate alternate key
value, and the STATUS return value is set to 10. For recoverable
files, UniBasic writes the duplicate keys, but sets STATUS to 10
after the write.

NO.NULLS Specifies that records that have an empty string as the alternate
key not be included in an alternate key index. Key values that are
the null value are included in indexes created with the
NO.NULLS keyword specified and null value handling turned
on.

CREATE.INDEX Parameters
 1-119

Example

The following example creates an index file for the CLIENTS demo file and

three alternate key indexes. When you create an index file, UniData prompts

for an alternate key length. If you press ENTER instead of entering a key

length, UniData uses the default (20).

:CREATE.INDEX CLIENTS LNAME COUNTRY ZIP_CODE
Alternate key length (default 20):
“LNAME” created
“COUNTRY” created
“ZIP_CODE” created
:

Related Commands

BUILD.INDEX, DELETE.INDEX, DISABLE.INDEX, ENABLE.INDEX,

LIST.INDEX, UPDATE.INDEX
1-120 UniData Commands Reference

CREATE.TRIGGER

Syntax

CREATE.TRIGGER [DATA | DICT] filename trigger [BEFORE] {UPDATE

|DELETE}

Synonym

CREATE-TRIGGER

Description

Use the ECL CREATE.TRIGGER command to place a trigger name in a file

header. Depending on the kind of trigger, UniData references a UniBasic

trigger subroutine with the trigger name whenever a user attempts to execute

either update or delete operations on a file.

For detailed information about creating trigger subroutines, see Developing
UniBasic Applications.

Note: To execute the CREATE.TRIGGER command, you must be the owner of the
file at the operating system level or have root permissions on UniData for UNIX or
Administrator permissions on UniData for Windows Platforms.
 1-121

Parameters

The following table describes each parameter of the syntax.

Examples

The following example creates a BEFORE UPDATE trigger in the header of

the INVENTORY file. The trigger calls the globally cataloged UniBasic

trigger subroutine PRICE_UPDATE.

:CREATE.TRIGGER INVENTORY PRICE_UPDATE UPDATE
:

To find out if triggers are present in a file header, use the LIST.TRIGGER

command. UniData indicates whether an UPDATE or DELETE trigger is

defined and provides the trigger name:

:LIST.TRIGGER INVENTORY
BEFORE UPDATE TRIGGER: PRICE_UPDATE
BEFORE DELETE TRIGGER: not defined
:

Parameter Description

DATA The data portion of a file.

DICT The dictionary portion of a file.

filename The name of the file that contains the header where the trigger
name is inserted.

trigger The name of the UniBasic trigger subroutine.

BEFORE The type of trigger that UniData executes before processing an
update or delete operation on the file.

UPDATE The trigger related to updated operations on a file. A file header can
reference only one UPDATE trigger.

DELETE The trigger related to delete operations on a file. A file header can
reference only one DELETE trigger.

CREATE.TRIGGER Parameters
1-122 UniData Commands Reference

Related Commands

DELETE.TRIGGER, LIST.TRIGGER
 1-123

DATE

Syntax

DATE

Description

The ECL DATE command displays the current system date and time on the

terminal screen.

Example

The following example displays the current system date and time.

: DATE
Wed Jul 30 10:20:50 MDT 1999
1-124 UniData Commands Reference

DATE.FORMAT

Syntax

DATE.FORMAT [2]

Synonym

DATE-FORMAT

Description

The ECL DATE.FORMAT command establishes the default display format

for dates in output from ECL, UniQuery, and UniBasic statements for the

current UniData session.

To reset the display to United States format, you must exit your current

UniData session and open a new session.

This command has no effect on output from the DATE command.

Note: To display dates in all uppercase, set UDT.OPTIONS 4 ON.

The setting of UDT.OPTIONS 34 toggles the system date format between
alphanumeric and numeric for the month display when you specify HEADING with
the D option in a UniQuery statement. ON produces alphanumeric output. OFF
produces numeric output. See the UDT.OPTIONS Commands Reference for more
information about UDT.OPTIONS.

If you always want to display dates in the international format for all users, you can
change the date value in the DEFAULTS record to 2. The DEFAULTS record is
located in the language message file in udthome/sys on UniData for UNIX or
udthome\sys on UniData for Windows Platforms. The date value is the last value in
attribute 1, and has a default setting of 0. For more information about the language
message file, see UniData International.
 1-125

Parameters

The following table describes each parameter of the syntax.

Example

The following example executes DATE.FORMAT 2, and then a UniQuery

statement that displays the system date in the header. Notice the

international date format:

:DATE.FORMAT 2
:LIST INVENTORY QTY HEADING “‘D’”
1999-07-30
INVENTORY. Quantity
10140 12000
149
13002 104
12006 396
11010 8781
3986
54090 575
...

Parameter Description

no option European: DD/MM/YY

2 International format: YY/MM/DD

DATE.FORMAT Parameters
1-126 UniData Commands Reference

dbpause

Syntax

dbpause

Description

dbpause is a UniData system-level command that blocks most updates to the

database made in a UniData session. Any updates made from the operating

system level are not blocked. You can use this feature to perform some tasks

that normally require UniData to be stopped, such as backing up your data.

When the dbpause command is issued, all current writes and transactions

complete before

UniData pauses. Updates are blocked until the system administrator

executes the dbresume command.

System-level commands, such as cp or mv on UniData for UNIX or COPY or

MOVE on UniData for Windows Platforms, are not blocked. In addition,

updates to the _HOLD_ file and the _PH_ file are not blocked, and printing

of reports is not interrupted.

If you execute dbpause when running the Recoverable File System (RFS),

UniData forces a checkpoint, flushes the after image logs to the archive files

(if archiving is enabled), and marks the next available logical sequence

number in the archive file for use after the backup. UniData displays this

information on the screen where you execute dbpause, and writes it to

udtbin/sm.log.

Note: To execute the dbpause command, you must log in as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.

For more information about dbpause, see Administering UniData and

Administering the Recoverable File System.
 1-127

Related Commands

dbpause_status, dbresume
1-128 UniData Commands Reference

dbpause_status

Syntax

dbpause_status

Description

The UniData system-level dbpause_status command returns information

about the status of dbpause. If dbpause is in effect, dbpause_status returns

the message DBpause is ON. If dbpause is not in effect, dbpause_status

returns the message DBpause is OFF.

For more information about dbpause_status, see Administering UniData and

Administering the Recoverable File System.

Related Commands

dbpause, dbresume
 1-129

dbresume

Syntax

dbresume

Description

The dbresume system-level command resumes processing after the dbpause

command is issued. When dbresume is executed, all writes that were blocked

when dbpause was issued complete.

Note: You must log in as root on UniData for UNIX or Administrator on UniData
for Windows Platforms to issue the dbresume command.

For more information about dbresume, see Administering UniData and

Administering the Recoverable File System.

Related Commands

dbpause, dbresume
1-130 UniData Commands Reference

DEBUG.FLAG

Syntax

DEBUG.FLAG [ON | OFF]

Synonym

DEBUG-FLAG

Description

The ECL DEBUG.FLAG command enables the UniBasic DEBUG command.

This flag is automatically on when UniData is installed.

For information about writing UniBasic programs, see Developing UniBasic
Applications.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

ON Enables the UniBasic DEBUG command.

OFF Suppresses the UniBasic DEBUG command.

DEBUG.FLAG Parameters
 1-131

Example

The following program contains the UniBasic DEBUG command at line 002:

: AE BP convertit
Top of “convertit” in “BP”, 19 lines, 411 characters.
*--: p
001: PROMPT ““
002: DEBUG
003: LOOP
004: PRINT “Input or output [I/O]?” :
005: INPUT i_or_o
006: IF i_or_o = ““ THEN STOP
...
019: END
Bottom.

As expected, when you execute this program, it exits to the debugger when

this line executes:

: RUN BP convertit
***DEBUGGER called at line 2 of program BP/_convertit

If you execute DEBUG.FLAG OFF before running the program, the DEBUG

command is ignored. Notice that the prompt is found on line 004, after the

DEBUG command in the program displayed previously:

: DEBUG.FLAG OFF
: RUN BP convertit
Input or output [I/O]?

If we then turn the flag back on, the DEBUG command executes the next time

we run the program:

:DEBUG.FLAG ON
:RUN BP convertit
***DEBUGGER called at line 2 of program BP/_convertit
1-132 UniData Commands Reference

DEBUGLINE.ATT

Syntax

DEBUGLINE.ATT

Synonym

DEBUGLINE-ATT

Description

The ECL DEBUGLINE.ATT command attaches a terminal for dual-terminal

debugging with the UniBasic debugger. You must first initialize the

communication line with SETDEBUGLINE.

For more information on UniBasic and the UniBasic debugger, see Developing
UniBasic Applications.

Related Commands

DEBUGLINE.DET, SETDEBUGLINE, UNSETDEBUGLINE
 1-133

DEBUGLINE.DET

Syntax

DEBUGLINE.DET

Synonym

DEBUGLINE-DET

Description

The ECL DEBUGLINE.DET command terminates dual-terminal debugging

with UniBasic.

For more information on UniBasic and the UniBasic debugger, see Developing
UniBasic Applications.

Related Commands

DEBUGLINE.ATT, SETDEBUGLINE, UNSETDEBUGLINE
1-134 UniData Commands Reference

DEFAULT.LOCKED.ACTION

Syntax

DEFAULT.LOCKED.ACTION [BELL [interval] | OFF]

Synonym

DEFAULT-LOCKED-ACTION

Description

The ECL DEFAULT.LOCKED.ACTION command turns on or off terminal

beeping at intervals while the process waits for an exclusive file or record

lock to be released.

Note: To avoid holding up a process when it encounters a lock, include the LOCKED
clause in the UniBasic command that attempts to set an exclusive lock.

Some UniBasic commands that set exclusive locks include the following:

■ READU

■ READVU

■ MATREADU

■ RECORDLOCKU
 1-135

Parameters

The following table describes each parameter of the syntax.

Example

The following example sets the terminal bell to sound every 20 seconds when

the process encounters a locked file or record:

: DEFAULT.LOCKED.ACTION BELL 20

Parameter Description

BELL Turns on the bell.

interval The interval, in seconds, at which the bell sounds. The default is 10
seconds.

OFF Turns off the bell.

DEFAULT.LOCKED.ACTION Parameters
1-136 UniData Commands Reference

DELETE

Syntax

DELETE [DICT] filename [record_ID [...]]

Description

The ECL DELETE command deletes one or more record IDs from a file. If you

do not indicate a record ID, UniData steps through the file, prompting with

each record key in turn.

You can execute this command against an active select list.

Warning: UniData deletes all data for record IDs listed in an active select list
without prompting for confirmation.

UniData displays an informational message if unable to execute this

command due to the presence of a DELETE trigger. For more information

about UniData triggers, see Using UniData.

Note: UDT.OPTIONS 16 governs the kind of message that displays when you use
an active select list to delete records. When this option is ON, UniData displays only
the number of records deleted. When this option is OFF, UniData displays the record
IDs, but not the number of records deleted.
 1-137

Parameters

The following table lists the DELETE command parameters.

Examples

In the following example, UniData deletes two records from the

INVENTORY demo file:

: DELETE INVENTORY 31000 39300
‘31000’ deleted.
‘39300’ deleted.
:

In the next example, UniData prompts for a record to delete from the

dictionary file of the INVENTORY demo file. You can enter only one record

ID each time UniData prompts:

: DELETE DICT INVENTORY
Delete more records from file INVENTORY (Y/N)? Y
please type in key: INV_DATE
‘INV_DATE’ deleted from INVENTORY
Delete more records from file INVENTORY (Y/N)? N

Parameter Description

DICT Deletes the dictionary. If you do not include the DICT keyword,
UniData deletes records from the data file.

filename File from which records are to be deleted.

record_ID ID of a record to be deleted. Separate multiple record IDs with a
space.

DELETE Parameters
1-138 UniData Commands Reference

In the next example, UniData deletes the records listed in an active select list.

If you respond Y to the prompt UniData immediately deletes all records in

the list.

:SELECT INVENTORY WITH @ID LIKE “5...”
83 records selected to list 0.
>DELETE INVENTORY
Do you want to delete records in select list?(Y/N)Y
‘56060’ deleted.
‘57030’ deleted.
‘53040’ deleted.
‘56070’ deleted.
‘55040’ deleted.
 1-139

DELETECOMMON

Syntax

DELETECOMMON [/common.name/]

Description

The ECL DELETECOMMON command deletes one or all named common

areas. If you do not specify common.name, all named common areas are

deleted.

If control returns to a UniBasic program after execution of

DELETECOMMON, or if the specified common area does not exist, UniData

displays a warning message and does not delete common.

Note: The UniBasic named common areas store variables that can be accessed from
any subroutine or program. For information on declaring and using named common
areas, see Developing UniBasic Applications, or COMMON in the UniBasic
Commands Reference.

Examples of allowed and disallowed processes.

Allowed Not Allowed

A user executes DELETECOMMON
from the ECL prompt.

1. A UniBasic program

2. EXECUTEs DELETECOMMON

1. Paragraph or Proc

2. Executes DELETECOMMON

1. A UniBasic program.

2. EXECUTEs a paragraph or Proc

3. that executes DELETECOMMON

1. A UniBasic program

2. CHAINs to a paragraph or Proc

3. that executes DELETECOMMON

1. A UniBasic program

2. CHAINs to a UniBasic program

3. CHAINS to another UniBasic program

4. that EXECUTEs DELETECOMMON

Allowed and Disallowed Processes
1-140 UniData Commands Reference

Example

The following example demonstrates passing and deleting named common.

These two programs pass the variable VAR in the named common COMVAR.

1. A UniBasic program

2. CHAINs to a UniBasic program

3. that CHAINs to another UniBasic
program

4. that CHAINs to a paragraph or
Proc

5. that executes DELETECOMMON

1. A Paragraph or Proc

2. runs a UniBasic program

3. that EXECUTEs DELETECOMMON

1. A Proc or paragraph

2. runs a UniBasic program

3. that CHAINs to a paragraph or
Proc

5. that executes DELETECOMMON

UDT.OPTIONS 40 ON:

1. A Proc or paragraph

2. runs a UniBasic program

3. that EXECUTE a UniBasic
program

4. that CHAINs to a paragraph or
Proc

5. that executes DELETECOMMON

UDT.OPTIONS 40 OFF:

1. A Proc or paragraph

2. runs a UniBasic program

3. that EXECUTE a UniBasic program

4. that CHAINs to a paragraph or Proc

5. that executes DELETECOMMON

Allowed Not Allowed

Allowed and Disallowed Processes (continued)
 1-141

Note: Named common remains in memory until deleted.

FIRST_PROG
COMMON /COMVAR/ VAR
VAR = VAR+1
PRINT “IN FIRST_PROG”
PRINT VAR
CALL NEXT_PROG
Program Example
NEXT_PROG
*Program NEXT_PROG
COMMON /COMVAR/ VAR
PRINT “IN NEXT_PROG”
VAR = VAR+1
PRINT VAR

Here is the output from these programs (the first time you execute

FIRST_PROG):

:RUN BP FIRST_PROG
IN FIRST_PROG
1
IN NEXT_PROG
2

VAR remains in the named common area COMVAR, which remains in

memory, getting incremented by two each time you execute

FIRST_PROGRAM, or once each time you execute NEXT_PROG until you

execute DELETECOMMON or until the operating system is rebooted. Here

we execute FIRST_PROG a second time, execute DELETECOMMON, then

execute FIRST_PROG a third time. Only after executing DELETECOMMON

is VAR reset to 0.

: RUN BP FIRST_PROG
IN FIRST_PROG
3
IN NEXT_PROG
4
: DELETECOMMON
: RUN BP FIRST_PROG
IN FIRST_PROG
1
IN NEXT_PROG
2

1-142 UniData Commands Reference

DELETE.CATALOG

Syntax

DELETE.CATALOG program

Synonyms

DECATALOG, DELETE-CATALOG

Description

The ECL DELETE.CATALOG command deletes the object code and removes

the VOC record for the program from the CTLG subdirectory in which it is

cataloged.

Note: DECATALOG works only in ECLTYPE P.

Even though you delete a cataloged program, as long as the program resides in the
DIR file in which it was created, you can run it from the UniData ECL prompt with
the RUN command. It cannot, however, be called with a UniBasic external call.

If a program is cataloged locally and globally, you must execute

DELETE.CATALOG once for each entry. UniData deletes the local program

first.

UniData places a copy of globally cataloged programs in shared memory for

all users to access. Therefore, when you delete the object code and the VOC

entry with this command, users who may be running the program from

shared memory are not affected.

UniData stores locally cataloged programs in the CTLG directory of the local

account. UniData stores globally cataloged programs in a subdirectory of the

CTLG directory in udthome/sys on UniData for UNIX or udthome\sys on

UniData for Windows Platforms. For more information about programming

in UniBasic, see Developing UniBasic Applications.Formore information about

cataloging and shared memory, see Administering UniData.
 1-143

Examples

The following examples are taken from UniData for UNIX. On UniData for

Windows Platforms, the path contains backslashes rather than forward

slashes.

The first example shows the VOC file pointer for a UniBasic program called

PRICE_UPDATE, which has been locally and globally cataloged. When you

catalog a program locally, UniData creates the VOC pointer:

: CT VOC PRICE_UPDATE
VOC:
PRICE_UPDATE:
C
/users/claireg/demo/CTLG/PRICE_UPDATE
BP PRICE_UPDATE
:

The next example shows the entries in the local and global catalogs for

PRICE_UPDATE:

: !pwd
/users/claireg/demo
:
: LS CTLG
LS CTLG
PRICE_UPDATE
:
: !ls $UDTHOME/sys/CTLG/p
!ls $UDTHOME/sys/CTLG/p

PRICE_UPDATE
:

1-144 UniData Commands Reference

The next example deletes the catalog entries and the VOC pointer with the

DELETE.CATALOG command. After UniData deletes the object code from

the catalogs, this program is no longer available for subroutine calls or direct

execution as a cataloged item.

: DELETE.CATALOG PRICE_UPDATE
:
: LS CTLG
:
: DELETE.CATALOG PRICE_UPDATE
:
: !ls $UDTHOME/sys/CTLG/p
:
: CT VOC PRICE_UPDATE
VOC:
PRICE_UPDATE is not a record in VOC.
:

 1-145

DELETE.FILE

Syntax

DELETE.FILE [DATA] [DICT] filename [,filename2] [FORCE]

Synonym

DELETE-FILE

Description

The ECL DELETE.FILE command deletes a UniData file and all records in it.

If you do not indicate DATA or DICT, UniData deletes both. If the file is

multilevel, UniData deletes all part files unless you stipulate filename2.

Note: UDT.OPTIONS 87 determines what UniData deletes when you execute
DELETE.FILE against a file in a remote account. If UDT.OPTIONS 87 is on,
UniData deletes the file pointer in the current directory and the file in the remote
account. If UDT.OPTIONS 87 is off, UniData deletes only the VOC entry that
points to the file.

You must have appropriate permissions to delete a UniData file.

Warning: You cannot use system-level commands (such as cp, rm,andtar) to operate
on UniData recoverable files when UniData is running. If you use these commands
on recoverable files, you could corrupt your data.
1-146 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Examples

The following example deletes both the data and dictionary files of the

CLIENTS demo file. Notice that UniData prompts before deleting the file.

: DELETE.FILE CLIENTS
Do you really want to delete file CLIENTS?(Y/N): Y
Deleting file D_CLIENTS.
Deleting file CLIENTS.
:

Parameter Description

DATA Deletes only the data file.

DICT Deletes only the dictionary file.

filename The name of the file to be deleted.

filename2 The multifile subdirectory to be deleted if filename is a multilevel
file. UniData does not delete other LD or LF type files within
filename.

FORCE Deletes the file without prompting for confirmation.

DELETE.FILE Parameters
 1-147

The next example displays a VOC pointer to the INVENTORY file in the

demo directory on UniData for UNIX. Then DELETE.FILE deletes the VOC

file pointer.

: CT VOC inventory
VOC:
inventory:
F
/disk1/ud60/demo/INVENTORY
/disk1/ud60/demo/D_INVENTORY
: DELETE.FILE inventory
inventory is a synonym, the real data file name is
/disk1/ud60/demo/INVENTORY
inventory has a synonym dict file, The real dict file is
/disk1/ud60/demo/D_INVENTORY
: CT VOC inventory
VOC:
inventory is not a record in VOC.
:

Related Commands

CLEAR.FILE, CREATE.FILE
1-148 UniData Commands Reference

DELETE.INDEX

Syntax

DELETE.INDEX filename {attribute [attributeM...attributeN] | ALL}

Synonym

DELETE-INDEX

Description

The ECL DELETE.INDEX command deletes an alternate key index from an

index file. You can delete multiple indexes simultaneously.

If DELETE.INDEX executes successfully, UniData sets

@SYSTEM.RETURN.CODE to the number of indexes deleted. If an error

occurs, UniData sets @SYSTEM.RETURN.CODE to -1.

DELETE.INDEX fails if the index has been disabled (with DISABLE.INDEX).

Tip: Occasionally index files can become corrupted due to hardware or software
failures. In these cases, we recommend that you use the ALL option with
DELETE.INDEX to delete the index file and all alternate key indexes, and then
rebuild the index file and the alternate key indexes.
 1-149

Parameters

The following table describes each parameter of the syntax.

Example

The following example removes all alternate key indexes in the CLIENTS

demo file:

: DELETE.INDEX CLIENTS LNAME COUNTRY ZIP
“LNAME” deleted
“COUNTRY” deleted
“ZIP” deleted
: LIST.INDEX CLIENTS
No indices created on file “CLIENTS”
:

For more information and creating, building, and deleting indexes, see Using
UniData.

Related Commands

BUILD.INDEX, CREATE.INDEX, DISABLE.INDEX, ENABLE.INDEX,

LIST.INDEX, UPDATE.INDEX

Parameter Description

filename The name of the data file that contains an index file.

attribute The name of the alternate key index. You can name as many alternate
key indexes as you want.

ALL Deletes all alternate key indexes from an index file and deletes the
index file itself.

If the index is in an overflowed state, you can delete it completely
with the ALL keyword, then re-create the index file with
CREATE.INDEX. This allows UniData to prompt for a key length, at
which point you can assign a longer key length.

DELETE.INDEX Parameters
1-150 UniData Commands Reference

DELETE.TRIGGER

Syntax

DELETE.TRIGGER filename [DATA | DICT] [BEFORE] {UPDATE |

DELETE}

Synonym

DELETE-TRIGGER

Description

The ECL DELETE.TRIGGER command deletes a trigger name from a file

header.

For more information about triggers, see Using UniData or Developing
UniBasic Applications.

Note: To delete a trigger, you must be the owner of the file at the operating system
level, or you must log in as root on UniData for UNIX or Administrator on UniData
for Windows Platforms.

Parameters

The following table lists the parameters for the DELETE.TRIGGER

command.

Parameter Description

DATA Deletes a trigger associated with a data file.

DICT Deletes a trigger associated with a dictionary file.

filename The name of the file from which the trigger is to be deleted.

DELETE.TRIGGER Parameters
 1-151

Example

The following example creates, lists, and deletes a trigger on the ORDERS

demo file:

: CREATE.TRIGGER ORDERS DEMO_RTN BEFORE UPDATE
: LIST.TRIGGER ORDERS
BEFORE UPDATE TRIGGER: DEMO_RTN
BEFORE DELETE TRIGGER: not defined
: DELETE.TRIGGER ORDERS UPDATE
: LIST.TRIGGER ORDERS
BEFORE UPDATE TRIGGER: not defined
BEFORE DELETE TRIGGER: not defined
:

Related Commands

CREATE.TRIGGER, LIST.TRIGGER

BEFORE UniData executes the trigger subroutine before processing an
update or delete operation on the file.

UPDATE Deletes an UPDATE trigger.

DELETE Deletes a DELETE trigger.

Parameter Description

DELETE.TRIGGER Parameters (continued)
1-152 UniData Commands Reference

deleteuser

Syntax

deleteuser pid

Description

The system-level deleteuser command deletes a process, removing its

identification number (pid) from the active UniData user list, and freeing up

a UniData license. This command sends a signal to the process requesting

that the process terminate in an orderly manner, then waits for five seconds

to see if the process was terminated. If the process is still active, deleteuser

forces immediate termination of the process.

deleteuser can be helpful to clean up orphaned processes after a system crash

or when an active process aborts.

Use this command at the system prompt, or use the ECL ! (bang) command

to execute this command from the ECL prompt.

Warning: Killing a process that may be accessing a file may cause file corruption.
Forcing a process to terminate interrupts writes in progress.

Note: To execute the deleteuser command, you must log in as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.
 1-153

Example

The following example lists and identifies user processes with the LISTUSER

command, then deletes user process 1976. The pid is found in USRNBR

column (second column).

listuser
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
32 2 0 2
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 1913 1283 carolw udt pts/1 17:01:14 Jul 30 1999
2 1976 1283 carolw udt pts/4 17:35:15 Jul 30 1999
# deleteuser 1913
# listuser
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
32 1 0 1
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
2 1976 1283 carolw udt pts/4 17:35:15 Jul 30 1999
#

Related Command

LISTUSER
1-154 UniData Commands Reference

DISABLE.INDEX

Syntax

DISABLE.INDEX filename

Synonym

DISABLE-INDEX

Description

The ECL DISABLE.INDEX command blocks automatic updating of

alternate key indexes. When automatic updating is disabled, UniData writes

updates to a log file. You must then execute ENABLE.INDEX to reactivate the

index. This applies updates to RFS files. For non-RFS files, you must also

execute UPDATE.INDEX to apply the updates.

If a data file is being accessed when you execute DISABLE.INDEX, UniData

continues to update the alternate key indexes until the file is closed.

The index log file for static files is x_filename on UniData for UNIX and

L_FILENAME on UniData for Windows Platforms. The files are located in

the current account. The index log file for dynamic files is xlog001, xlog002,

and so forth. The log files are located in the dynamic file directory, rather than

the account.

Note: Depending on the number and size of alternate key indexes, automatic index
updating may slow system performance.

Example

The following example disables automatic index updating for the CLIENTS

demo file:

: DISABLE.INDEX CLIENTS
Automatic Updates have been disabled for CLIENTS
:

 1-155

Related Commands

BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, ENABLE.INDEX,

LIST.INDEX
1-156 UniData Commands Reference

DISABLE.USERSTATS

Syntax

DISABLE.USERSTATS

Description

The DISABLE.USERSTATS command discontinues collection of statistics

for a UniData session.
 1-157

DTX

Syntax

DTX decimal.number

Description

The ECL DTX command translates a decimal number to its equivalent

hexadecimal value. DTX performs the inverse operation of the XTD

command. If you input invalid characters, DTX returns 0.

Valid decimal values range from -2,147,483,647 to 2,147,483,647.

Hexadecimal values ranging from 80000001 (-2,147,483,647) to FFFFFFFF (-1)

are negative.

Example

In the following example, the DTX command translates the decimal numbers

to their equivalent hexadecimal value:

: DTX 2738
AB2
: DTX -2121
FFFFF7B7
: DTX 1996
7CC
:

Related Command

XTD
1-158 UniData Commands Reference

dumpgroup

Syntax

dumpgroup filename group [-doutputfile][-p]

Description

The system-level dumpgroup command extracts readable records from a

specified group in a UniData file. If the file was corrupted, dumpgroup

unloads only the complete, valid records, leaving behind any information it

cannot read.

If you execute dumpgroup without specifying an output file, the output

simply displays on the screen. You will not be able to use that output to verify

records or repair the damaged group. If you do specify an output file,

dumpgroup extracts readable records in uneditable form, suitable for

reloading. dumpgroup also creates a directory in the /tmp directory on

UniData for UNIX or the \TEMP directory on UniData for Windows

Platforms for each dumped group. The directory is named FILE_GROUP,

where FILE and GROUP are the file name and group number you specified.

This directory contains an ASCII file for each record, so that you can check

them for consistency before reloading the damaged file.

For more information about how to use dumpgroup to recover files, see

Administering UniData.

Use this command at the system prompt, or use the ECL! (bang) command to

execute this command from the ECL prompt.

Warning: When you use the -d parameter, make sure you name your output file with
a name that does not already exist in your account name. If you specify a duplicate
name, your data may be overwritten.
 1-159

Parameters

The following table describes each parameter of the syntax.

Related Commands

fixfile, fixgroup, guide, verify2

Parameter Description

filename Name of the file that contains groups to be extracted.

group Number of the group to be dumped.

Tip – The output from guide and verify2 identifies damaged
groups.

-doutputfile Directs output to outputfile.

Output file that contains the readable records from the dumped
group. You cannot edit this file. If you do not include -d,
dumpgroup displays readable records on the display screen.

Do not insert a space between -d and outputfile.

Warning – Make sure outputfile is not the name of another item in
your account. If it is, UniData will overwrite it.

Tip – This file is the input file for the fixgroup command.

-p Converts nonprinting field markers to printable characters in
output file. Makes outputfile editable. This option is valid only
with -d.

dumpgroup Parameters
1-160 UniData Commands Reference

DUP.STATUS

Syntax

DUP.STATUS [ON|OFF]

Description

The ECL DUP.STATUS command turns on or off the UniBasic checking for

duplicate alternate index keys when reading or writing records. The setting

of DUP.STATUS affects only files for which an alternate key index exists.

DUP.STATUS with no option returns the current setting: ON or OFF.

With DUP.STATUS ON, the following commands set the UniBasic STATUS

function return value to 10 when one of the following commands reads or

writes a duplicate alternate index key:

■ WRITE, WRITEU, WRITEV, WRITEVU

■ READFWD, READFWDL, READFWDU

■ READBCK, READBCKL, READBCKL

With DUP.STATUS turned off, the return value of the UniBasic STATUS

function returns 0 after successful execution of the preceding commands,

regardless of the presence or absence of duplicate alternate key values.

Note: When you create an index, you can specify NO.DUPS to prevent UniData
from creating duplicate values in the alternate key index of a nonrecoverable file. This
blocks completion of the ECL BUILD.INDEX command and all UniBasic write
commands when they would result in duplicate values being written to the alternate
key index.
 1-161

Examples

The following program writes duplicate alternate key values to the index

LNAME. With DUP.STATUS ON, the STATUS function returns 10 after the

WRITE (see the WRITE command and STATUS function in bold typeface).

OPEN ‘CLIENTS’ TO clients ELSE PRINT “Open error”
SETINDEX ‘LNAME’, FIRST_ALT_KEY ON clients

LOOP
READFWD rec FROM clients THEN
 ID = @ID
 IF STATUS() = 10 THEN
 PRINT “Duplicate record “:ID:” “:rec<2>:”, “:rec<3>
 END ELSE
 PRINT “NOT duplicate record “:ID:
 PRINT “,”:rec<2>:”,”:rec<3>:” STATUS: “:STATUS()
 ID = ID + 1000
 WRITE rec TO clients,ID ON ERROR PRINT “ STATUS: “:STATUS()
 PRINT “New record: “:ID:”,”:rec<2>:”,”:rec<3>:” STATUS:
“:STATUS()
 READFWD rec FROM clients THEN CONTINUE
 END
 END ELSE EXIT
REPEAT

This program produces the following results with DUP.STATUS on:

: RUN BP DUPSTAT
NOT duplicate record 9968,Adams,United Hospital STATUS: 0
New record: 10968,Adams,United Hospital STATUS: 10
NOT duplicate record 10054,Alps,Weld Engineering STATUS: 0
New record: 11054,Alps,Weld Engineering STATUS: 10
NOT duplicate record 10034,Anderson,Otis Concrete STATUS: 0
New record: 11034,Anderson,Otis Concrete STATUS: 10
NOT duplicate record 10020,Andropolis,Calgary Aluminum STATUS: 0
New record: 11020,Andropolis,Calgary Aluminum STATUS: 10

NOT duplicate record 10008,Anitpoli,W Systems STATUS: 0
New record: 11008,Anitpoli,W Systems STATUS: 10
NOT duplicate record 9987,Asakawa,Pearl Security STATUS: 0
New record: 10987,Asakawa,Pearl Security STATUS: 10
NOT duplicate record 10074,Barry,Lyon Repair STATUS: 0
1-162 UniData Commands Reference

ECLTYPE

Syntax

ECLTYPE [P | U]

Description

The ECL command ECLTYPE determines the parser used to interpret

UniData commands issued at the UniData colon (:) prompt.

If you enter the ECLTYPE without indicating P or U, UniData displays the

setting for UDT.OPTIONS 2. When UDT.OPTIONS 2 is off, ECLTYPE is U.

When it is on, ECLTYPE is P.

We recommend that you use ECLTYPE U. ECLTYPE P is available for

backward compatibility with legacy Pick® databases.

Note: Another way to change ECLTYPE is to change the setting of UDT.OPTIONS
2. By default, UDT.OPTIONS 2 is off. See the UDT.OPTIONS Commands
Reference for more information about UDT.OPTIONS.

The ECLTYPE command has no effect on UniBasic programs. The parser used to
execute a UniBasic program is determined by the BASICTYPE in which the program
is compiled. See the UniBasic $BASICTYPE command documentation for more
information.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

P UniData interprets commands consistent with the Pick®
parser.

U UniData interprets commands consistent with the
UniData parser.

ECLTYPE Parameters
 1-163

Example

In this example, UniData performs the following tasks:

■ Displays the setting for UDT.OPTIONS 2 (OFF), indicating

ECLTYPE U.

■ Changes ECLTYPE to P.

■ Displays the new setting for UDT.OPTIONS 2 (ON), which indicates

ECLTYPE P.

: ECLTYPE
2 U_PSTYLEECL OFF
:
:ECLTYPE P
:
: ECLTYPE
2 U_PSTYLEECL ON
:

1-164 UniData Commands Reference

ED

Syntax

ED [DICT] filename [record_ID]

Description

The ECL ED command invokes the standard operating system editor

supported by UniData. On UniData for UNIX, the default system editor is vi.

On UniData for Windows Platforms, the default system editor is the MS-DOS

editor. To select a system editor other than the default, set the environment

variable UDT_EDIT or modify the VOC record ED. You can create and edit

UniBasic programs, VOC records, and data and dictionary files with the

system editor. The UniData interface to the operating system allows the

system editor to work with active select lists and to interactively prompt for

record IDs.

You can edit only one record at a time in a UniData hashed file or DIR-type

file.

UniData displays a warning message if a trigger prevents record update or

deletion. For more information on UniData triggers, see the

CREATE.TRIGGER command in this manual or Developing UniBasic
Applications.

Note: On UniData for Windows Platforms, the ED command invokes the MS-DOS
editor. This editor requires a graphical user interface, and is therefore unusable in a
Telnet session. If you log on to UniData via UDSerial or UDTelnet services and
execute ED, UniData displays a message advising you to use AE.

Tip: To direct UniData to automatically invoke an editor other than the default when
executing the ED command, set the UniData environment variable UDT_EDIT to
the full path of the editor of your choice. On UniData for Windows Platforms, be
aware that users logged in via the UDSerial or UDTelnet services will be unable to
use ED unless you have purchased a third-party character-based editor. For more
information on supported editors, see your operating system documentation.
 1-165

Regarding UniData editors:

■ The ECL AE command invokes the UniData Alternate Editor. You

can use this line editor to edit UniData hashed files and UniBasic

source programs.

■ UniData supplies UniEntry for modifying UniData records.

■ You can edit UniData hashed files and DIR-type files with any ASCII

text editor. For more information on supported editors, see your

operating system documentation. Be aware, though, of any changes

or conversions the editor might make to files it opens.

■ On UniData for UNIX, the ECL VI command invokes vi, the UNIX

system V visual editor, from within UniData.

Parameters

The following table describes each parameter of the syntax.

UniData Delimiters

Before displaying a record through ED, UniData converts the UniData

delimiters in hashed files (not DIR files) into symbols. The following table

lists the symbols to which delimiters are converted.

Parameter Description

DICT Indicates a UniData dictionary file.

filename The name of the file to be edited. filename can be a hashed data file
or a DIR-type file (such as _PH_ or _HOLD_).

record_ID The primary key of the record within filename to be edited. If the
item is not found, UniData creates a new record with this ID.

ED Parameters

Symbol Delimiter Name ASCII Character

} Value mark ASCII 253

| Subvalue mark ASCII 252

UniData Delimiters
1-166 UniData Commands Reference

During the ED session, you can use theses symbols to insert value and

subvalue marks into a record. UniData converts the delimiters to the

corresponding ASCII value when you save the edited record at the end of the

session.

Examples

The following example retrieves an existing record in the INVENTORY demo

file with the ED editor:

: ED INVENTORY
Please enter key: 52020

After the ID is entered, the user presses ENTER. UniData clears the screen

and displays the record.

In the following example, taken from UniData on UNIX, the UniData

environment variable UDT_EDIT was set so that the ED command invokes

the system editor vi.

10236
28560
Printer
9 Pin Dot Matrix
Gray
56
19999
30
~
...
“/tmp/__ED7267” 8 lines, 54 characters
 1-167

ENABLE.INDEX

Syntax

ENABLE.INDEX filename

Description

The ECL ENABLE.INDEX command turns on automatic updating of

alternate key indexes for a data file.

For nonrecoverable files, ENABLE.INDEX does not apply updates that were

deferred as a result of the DISABLE.INDEX command. To apply them,

execute ENABLE.INDEX followed by UPDATE.INDEX.

For recoverable files, ENABLE.INDEX automatically applies updates that

were deferred as a result of the DISABLE.INDEX command, so you do not

have to update their indexes with UPDATE.INDEX.

Warning: Execute UPDATE.INDEX on a nonrecoverable file immediately after
executing ENABLE.INDEX to avoid data integrity problems.

Tip: You can display the current state of index updating with the LIST.INDEX
command.

Examples

In the following example, the ENABLE.INDEX command turns on automatic

index updating:

: ENABLE.INDEX CLIENTS
Automatic Updates have been enabled for CLIENTS
1-168 UniData Commands Reference

In the next example, LIST.INDEX is used to find out if an alternate key index

has been updated. In line 8 of the report, “Index updates,” UniData reports

that the alternate key indexes require updating, indicating that updates were

made to records in the data file between the time when updates were

deferred (as a result of the DISABLE.INDEX command) and the point when

ENABLE.INDEX was executed.

:LIST.INDEX CLIENTS
Alternate Key Index Details for File CLIENTS Page 1
File.................. CLIENTS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (1 in use, 0 overflowed)
Indices............... 4 (4 D-type)
Index updates......... Enabled, Indices require updating
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-
no/VF-expr....
FNAME D Txt Yes Yes Yes Yes S 1
LNAME D Txt Yes Yes Yes Yes S 2
COUNTRY D Txt Yes Yes Yes Yes S 8

Related Commands

BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX,

LIST.INDEX, UPDATE.INDEX
 1-169

ENABLE.USERSTATS

Syntax

ENABLE.USERSTATS

Description

The ENABLE.USERSTATS command begins collection of detailed statistics

about the current UniData session. Each time you issue the command,

UniData zeros all of the statistics for your process.
1-170 UniData Commands Reference

FILE.STAT

Syntax

FILE.STAT [DICT] filename [LPTR]

Synonym

FILE-STAT

Description

The ECL FILE.STAT command displays statistical information on a data file,

including hash type, split/merge type (for dynamic files), block size, number

of records, overflow status, record size, and total bytes used.

Note: The output from FILE.STAT differs depending on ECLTYPE.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

DICT Displays information about the dictionary portion of a file.

filename The name of the file to be analyzed.

LPTR Directs output to the printer instead of the display terminal.

FILE.STAT Parameters
 1-171

Examples

The following example shows FILE.STAT output for the CLIENTS file in the

demo database, in ECLTYPE P and in ECLTYPE U:

: ECLTYPE P
: FILE.STAT CLIENTS
15:51:48 Apr 28 1999
FILE MOD OV HTY ITEMS BYTES MNI/G MXI/G MNB/I MXB/I
CLIENTS 19 0 0 130 14452 6 8 93 140
------- ------- -------
19 130 14452
:
: ECLTYPE U
: FILE.STAT CLIENTS
File name = CLIENTS
Number of groups in file (modulo) = 19
Static hashing, hash type = 0
Block size = 1024
File has 1 groups in level one overflow.
Number of records = 130
Total number of bytes = 14452
...
1-172 UniData Commands Reference

In the next example, the convhash command changes CLIENTS to a dynamic

file. Notice that FILE.STAT displays the hash type and also the split/merge

type:

: ECLTYPE U
: !memresize CLIENTS DYNAMIC
Resize CLIENTS mod(,sep) = 0(,-1) type = -1 memory = 8000 (k)
dynamic
KEYONLY PARTTBL=DEFAULT
RESIZE file CLIENTS to 101.
134 record(s) in file.
CLIENTS RESIZED from 101 to 101
Total time used =1 (sec)
: FILE.STAT CLIENTS
File name(Dynamic File) = CLIENTS
Number of groups in file (modulo) = 101
Dynamic hashing, hash type = 0
Split/Merge type = KEYONLY
Block size = 1024
Number of records = 134
Total number of bytes = 14585
Average number of records per group = 1.3
Standard deviation from average = 0.6
Average number of bytes per group = 144.4
Standard deviation from average = 62.7
Average number of bytes in a record = 108.8
Average number of bytes in record ID = 5.8
Standard deviation from average = 16.1
Minimum number of bytes in a record = 14
Maximum number of bytes in a record = 140
Minimum number of fields in a record = 2
Maximum number of fields in a record = 16
Average number of fields per record = 9.9
Standard deviation from average = 1.0
:

Related Commands

ANALYZE.FILE, GROUP.STAT
 1-173

FILELIMIT

Syntax

FILELIMIT

Description

The ECL FILELIMIT command displays the maximum file size, in blocks,

that the current process can write.

Standard block sizes vary depending upon the host machine and the

operating system version.

Tip: To determine the maximum modulo number for a UniData file, multiply the
number of blocks by the standard block size (512) and divide by 2048 or by a block
size supported by your operating system.

Example

In the following example, UniData displays the maximum file size available

to create a new file on one particular installation:

: FILELIMIT
File size limit for this process is 4194304 blocks
:

1-174 UniData Commands Reference

FILEVER

Syntax

FILEVER [filenameM...filenameN]

filever [filenameM...filenameN]

Description

The ECL FILEVER command and the system-level filever command display

the following information on UniData files:

■ high-byte or low-byte (also provided by the system-level filever

command)

■ recoverable or nonrecoverable

■ static or dynamic

filename is the name of a UniData file.

Example

The following example shows FILEVER output for three demo database files:

: FILEVER INVENTORY CLIENTS ORDERS
This machine is a high byte machine.
Recoverable INVENTORY is high byte machine 2.0 dynamic version.
Non-recoverable CLIENTS is high byte machine 2.0 static version.
Recoverable ORDERS is high byte machine 2.0 dynamic version.

Note: Although output from the filever command indicates if a file is recoverable or
nonrecoverable, the Recoverable File System (RFS) is not supported on UniData for
Windows Platforms. All files on UniData for Windows Platforms are treated as
nonrecoverable.
 1-175

fixfile

Syntax

fixfile {[-doutputfile]-f | -t | -k | -p]} [-mmessagefile][-wdirectory][-iinputfile |

filename group]

Description

The system-level fixfile command repairs a damaged group in a UniData file

by extracting and reloading readable records.

fixfile with the -i option accepts as input a file created by the system-level

guide command.

UniData operates differently depending on whether the file is static or

dynamic, and whether one group is damaged or multiple groups are

damaged. For detailed information about using fixfile to repair damaged

groups, refer to Administering UniData.

To repair files, you must include the -d and -f options.

Warning: Do not let users access UniData files while fixfile is running you could
lose records.

Before creating new output files, the guide utility renames all files it

processes by appending a date. We recommend you remove the original (old)

versions of these files after fixfile finishes running.
1-176 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-doutputfile For each readable record, UniData creates an ASCII file in a
directory in the current UniData account. UniData also takes the
following actions for static and dynamic files:

Static files – Stores readable records in (uneditable) outputfile.

Dynamic files – Stores readable records in (uneditable) outputfile
and in a subdirectory in the /tmp directory named
filename_groupno on UniData for UNIX, or in the \TEMP directory
on UniData for Windows Platforms.

Note: To repair files, you must include both the -f parameter (to
clear the group) and the -d parameter (to restore readable records).

-f Clears damaged groups. Must be combined with the -d or -t
parameters.

-k Does not clear records before reloading them, so that damaged
records are retained in the file. Must be combined with the -d or -f
parameters.

■ To copy readable records to another file, include the -k and the -

d parameters.

■ To copy readable records to another file and return them to the

file, include the -k, -d, and -f options.

-o[filename] Stores output in filename. If filename is not specified, sends output
to the standard output device. Default output device is the display
terminal.

Specify output device at the operating system level.

-p Combine with the -d option to convert UniData delimiters and
nonprinting characters in the ASCII files as follows:

■ Attribute mark – New line

■ Value mark – “}”

■ Subvalue mark – “|”

■ Text mark – “{“

■ Nonprinting – “.”

fixfile Parameters
 1-177

-t Record key and the record length are reported for each readable
record. Directs output to the terminal only. All attributes in the
record are listed, indented by two spaces. In the display, UniData
delimiters and nonprinting characters are represented as follows:

■ Attribute mark – New line

■ Value mark – “}”

■ Subvalue mark – “|”

■ Text mark – “{“

■ Nonprinting – “.”

Note: The -t and -d options are mutually exclusive.

-mmessagefile Writes error messages and statistics to messagefile instead of the
terminal.

-wdirectory Specifies directory for storing work files.

-iinputfile The file containing names of files and groups to be repaired.

inputfile is produced by the guide command. If you do not
designate inputfile with guide, fixfile reads damaged file and group
names from GUIDE_FIXUP.DAT in the current directory. The
following describes the format of GUIDE_FIXUP.DAT:

filenameM
group_num
...
filenameN
group_num
group_num
group_num

Note: -iinputfile and filename group are mutually exclusive.

filename The name of the damaged file.

group The number of the damaged group.

Parameter Description

fixfile Parameters (continued)
1-178 UniData Commands Reference

How fixfile Works with Static Files

When you execute fixfile with the -t parameter against a static file, UniData

displays the readable records from the file and group to the terminal. The

group is not cleared or repaired. You can supply the names of the damaged

files and groups from the command line or from an input file. The default

input file is GUIDE_FIXUP.DAT, created if the guide utility detects damaged

groups.

When you execute fixfile with the -d parameter on a static file, UniData

creates:

■ On UniData for Windows Platforms, an NTFS directory named

FILE_dir, where FILE is the name of the static file. Each FILE_dir

contains a subdirectory for each damaged group in FILE. The name

of each subdirectory is the group number of the damaged group.

Each subdirectory contains a text file for every readable record in the

damaged group. Each filename is the key for the corresponding

UniData record. These group records are in a format suitable for

editing.

■ A file, with the name you specified on the command line, containing

the records fixfile could read in uneditable format. This file is used to

reload the records into the damaged groups after the groups are

cleared.

Note: If you specify the -p parameter, fixfile translates nonprinting characters in the
records when it creates the editable files. Otherwise, only attribute marks are
translated to new lines.

When you run fixfile with the -d and-f parameters against a static file,

UniData reloads the records into the damaged groups, taking them from the

file you specified on the command line. Unless you specify the -k parameter,

fixfile clears the groups, removing all contents, before reloading the data. If

you specify the -k parameter, UniData adds the records back, but does not

clear any data from the group.

How fixfile Works with Dynamic Files on UniData for UNIX

When you execute fixfile with the -d option against a dynamic file, UniData

creates the following:
 1-179

■ Each FILE_GROUP directory contains a text file for every readable

record in the damaged group. Each records name is the key for the

corresponding UniData record. These records are in a format suitable

for editing.

■ A file containing the records fixfile could read, in uneditable format

suitable for reloading into the group after it has been cleared. This

file is located in /tmp (or in the directory identified by the tmp

environment variable) and is names ud_dp_pid. pid is the process ID

of the process that executed fixfile.

When you execute fixfile with the -d and -f parameters against a dynamic file,

UniData reads the file you specify with the -d parameter on the command

line, and also reads the uneditable file of dumped records. UniData then

reloads the records from that file into the damaged groups. Unless you

specified the -k parameter, fixfile clears the groups, removing all contents,

before reloading the data. Otherwise, UniData adds the records back, but

does not clear any data from the group.

How fixfile Works with Dynamic Files on UniData for Windows
Platforms

When you execute fixfile with the -d option against a dynamic file, UniData

creates the following:

■ An NTFS directory located in \TEMP for each file/group

combination being repaired. The directories are named

FILE_GROUP, where FILE is a damaged file (created from the guide

utility) and GROUP is a damaged group. If several groups in a file

are damaged, UniData creates a directory for each damaged group.

■ Each FILE_GROUP directory contains a text file for every readable

record in the damaged group. Each records name is the key for the

corresponding UniData record. These records are in a format suitable

for editing.

■ A file containing the records fixfile could read, in uneditable format

suitable for reloading into the group after it has been cleared. This

file is located in \TEMP (or in the directory identified by the tmp

environment variable) and is named ud_dp_pid. pid is the process

ID of the process that executed fixfile.
1-180 UniData Commands Reference

When you execute fixfile with the -d and -f parameters against a dynamic file,

UniData reads the file you specify with the -d parameter on the command

line, and also reads the uneditable file of dumped records. UniData then

reloads the records from that file into the damaged groups. Unless you

specified the -k parameter, fixfile clears the groups, removing all contents,

before reloading the data. Otherwise, UniData adds the records back, but

does not clear any data from the group.

Examples
: !fixfile -ddump -f
Fixing dynamic file /usr/udt60/demo/INVENTORY, group 0
6 records dumped for group 0
The records can be found under directory /tmp//INVENTORY_0
Check them before fixing the file
1 block(including the group header) of group 0 was made empty
6 records written to file /usr/udt60/demo/INVENTORY.

In this case the user can look in the /tmp/INVENTORY_0 directory for

copies of readable records. The file name suffix represents the group number

from which the records were extracted. In this example, records were

extracted from group 0. The user could compare this version of INVENTORY

with recent backups to find out if records are missing in the new version.
 1-181

After this execution of fixfile, guide reveals that the INVENTORY file is

repaired.

: !guide INVENTORY -o
INVENTORY
Basic statistics:
File type............................... Recoverable Dynamic
Hashing
File size
[dat001].............................. 20480
[over001]............................. 9216
File modulo............................. 19
File minimum modulo..................... 19
File split factor....................... 60
File merge factor....................... 40
File hash type.......................... 1
File block size......................... 1024
File integrity:
No errors were found
Group count:
Number of level 1 overflow groups....... 8
Primary groups in level 1 overflow...... 8
Record count:
Total number of records................. 175
Average number of records per group..... 9.21
Standard deviation from average......... 3.58
Record length:
Average record length................... 71.17
Standard deviation from average......... 18.25
Key length:
Average key length...................... 5.00
Standard deviation from average......... 0.00
Data size:
Average data size....................... 86.17
Standard deviation from average......... 18.25
Total data size......................... 15080

Predicted optimal size:
Records per block....................... 10
Percentage of near term growth.......... 10
Scalar applied to calculation........... 0.00
Block size.............................. 1024
Modulo.................................. 19
Files processed: 1
Errors encountered: 0

Related Commands

dumpgroup, fixgroup, guide, verify2
1-182 UniData Commands Reference

fixgroup

Syntax

fixgroup filename group [-iinputfile][-k]

Description

The system-level fixgroup command reloads a single hashed file group from

the output file generated by the dumpgroup command.

Warning: If you run fixgroup without including an input file (using the -i
parameter), UniData clears the damaged group and leaves it empty. Be sure that you
have previously saved the readable records with the dumpgroup command. If you
clear the damaged group and you have not saved the readable records, the data in that
group is lost. The syntax for clearing a group without reloading it is:

fixgroup filename group

%fixgroup INVENTORY 5

Fixgroup INVENTORY 5 will make group 5 empty,

do you wish to do it? [y/n]

Execute this command at the system prompt, or use the ! (bang) command to

execute this command at the ECL prompt.

Tip: Some types of file corruption (for example, file corruption that is not associated
with a group number) can be repaired with the memresize command.
 1-183

Parameters

The following table describes each parameter of the syntax.

Example

To prepare for this example, group 0 in the demo file INVENTORY was

damaged. Then dumpgroup was executed to create the output file d_group.

In this example, fixgroup first clears group 0, then copies repaired records

from d_group into the group.

: !dumpgroup INVENTORY 0 -dd_group
6 records dumped for group 0
The records can be found under directory /tmp//INVENTORY_0
Check them before fixing the file
: !fixgroup INVENTORY 0 -id_group
1 block(including the group header) of group 0 was made empty
6 records written to file INVENTORY.
:

Related Commands

dumpgroup, fixfile, guide, verify2

Parameter Description

filename The name of the file to be repaired.

group The damaged group.

-iinputfile Uses inputfile to replace group. inputfile is generated by the
dumpgroup command. If you do not name an input file, UniData
clears group without reloading it.

Note: No space is allowed between -i and inputfile.

-k Reloads damaged records from inputfile without clearing the group
first. This option may be useful if the group has updated since
dumpgroup was executed.

Tip: Do not allow user access while a file is being repaired. We
suggest that you clear damaged groups to ensure that damage is
removed before reimporting records (in other words, do not use -k
option) on the final executing of fixgroup.

fixgroup Parameters
1-184 UniData Commands Reference

fixtbl

Syntax

fixtbl [-fix]

Description

The system-level fixtbl command detects and optionally repairs certain error

conditions that can affect dynamic files. Execute fixtbl from the UNIX

prompt. This command is supported on UniData for UNIX only.

Note: fixtbl is an offline tool. If you attempt to execute fixtbl while UniData is
running or paused, an error message displays and the command fails. This tool is
intended for system administrators performing maintenance functions. It is not
intended for end users.

When a dynamic file expands outside the file system where it was created,

the part files are placed in a file system selected from a part table (a list of

locations where the original file can expand). The original dynamic file

directory contains UNIX symbolic links to the physical location of the data

and overflow part files. In each file system where dynamic files expand,

UniData maintains a UNIX hidden file called .fil_prefix_tbl that relates part

file names back to their original dynamic file and account. The symbolic links

may become out of sync with.fil_prefix_tbl if users manipulate dynamic part

files with the UNIX mv, cp, or rm command. The fixtbl tool detects the

following error conditions:

■ .fil_prefix_tbl is missing. If a dynamic file directory contains links to

another partition, but there is no .fil_prefix_tbl at that location, fixtbl

can create a new one.

■ A prefix in .fil_prefix_tbl references a different directory than the

symbolic links from a dynamic file in the current account. fixtbl can

select a new prefix, then move and relink the part files for

consistency.
 1-185

■ There are symbolic links from a dynamic file to another partition,

but there is no entry in the .fil_prefix_tbl that matches the links.

Assuming the prefix in the links is not used by another directory,

fixtbl can create an entry in .fil_prefix_tbl that is consistent with the

links from dynamic files in the current account directory.

See Administering UniData for more information about part tables and per-file

part tables.

Parameters

The behavior of fixtbl depends on whether you specify the optional

parameter [-fix]. If you specify -fix, fixtbl creates or modifies the .fil_prefix_tbl

in the target partition. Otherwise, fixtbl creates or modifies a working copy of

.fil_prefix_tbl, called .fil_prefix_tbl.new. The following table summarizes the

behavior of fixtbl with and without -fix.

Examples

The following examples show fixtbl output.

Error Condition fixtbl fixtbl -fix

.fil_prefix_tbl missing Creates/updates
.fil_prefix_tbl.new.

Creates new .fil_prefix_tbl.

Naming
inconsistency

Displays information
messages on the screen.

Adds necessary entries to
.fil_prefix_tbl; move and
relink part files; display no
messages.

Missing entry in
.fil_prefix_tbl.

Creates/updates
.fil_prefix_tbl.new.

Creates/updates
.fil_prefix_tbl.

Behavior of fixtbl Command
1-186 UniData Commands Reference

In the first example, there is a naming conflict between .fil_prefix_tbl and the

symbolic links in the dynamic file directory:

% fixtbl
Creating new /tmp/partfiles/.fil_prefix_tbl.new file
Error: Problem entry in prefix table
/tmp/partfiles/.fil_prefix_tbl. Prefix AA
in /tmp/partfiles/.fil_prefix_tbl corresponds to /disk1/ud41/demo
but the dynamic file /home/terric/SAMPLE/SAMPLE_FILE/dat001 is
located in
/home/terric/SAMPLE. Please resolve the inconsistency.
Error: Problem entry in prefix table
/tmp/partfiles/.fil_prefix_tbl. Prefix AA
in /tmp/partfiles/.fil_prefix_tbl corresponds to /disk1/ud41/demo
but the dynamic file /home/terric/SAMPLE/SAMPLE_FILE/over001 is
located in
/home/terric/SAMPLE. Please resolve the inconsistency.

Notice that in the previous example fixtbl was run without the -fix option.

Executing fixtbl -fix adds a new entry to .fil_prefix_tbl and moves and relinks

the part files.

In the next example, the dynamic file contains links to

/tmp/partfiles/BBSAMPLE_FILE3, but the prefix table does not match:

% fixtbl
Creating new /tmp/partfiles/.fil_prefix_tbl.new file
Error: File /home/terric/SAMPLE/SAMPLE_FILE3/dat001. Inconsistency
between
the symbolic link (/tmp/partfiles/BBSAMPLE_FILE3/dat001) and
/tmp/partfiles/.fil_prefix_tbl. Please locate the part file, and
either rename/relink it or change /tmp/partfiles/.fil_prefix_tbl.
Error: File /home/terric/SAMPLE/SAMPLE_FILE3/over001.
Inconsistency between
the symbolic link (/tmp/partfiles/BBSAMPLE_FILE3/over001) and
/tmp/partfiles/.fil_prefix_tbl. Please locate the part file, and
either rename/relink it or change /tmp/partfiles/.fil_prefix_tbl.

Notice that the -fix parameter was not used in the previous example, so

updates were made to the working file .fil_prefix_tbl.new. Executing fixtbl

with -fix moves and relinks the part files to resolve the inconsistency.

In the next example, a user attempts to execute fixtbl while the UniData

daemons are running:

: !fixtbl
fixtbl has detected that the UniData daemons are running.
The system administrator must stop the daemons (with stopud)
before fixtbl can execute.
 1-187

FLOAT.PRECISION

Syntax

FLOAT.PRECISION [0|1|2|3|4[,round]]

Synonym

FLOAT-PRECISION

Description

The ECL FLOAT.PRECISION command controls how UniData applies

truncation and rounding for the following operations:

■ Arithmetic calculations

■ Display or printing (numbers are always converted from decimal to

string)

■ Comparisons

■ UniBasic INT function

When you execute an arithmetic operation, UniData invokes the appropriate

host operating system command, which performs the operation in floating

point. When the results are converted to string format for print or display, the

rounding that is automatically applied may produce unexpected results, so

FLOAT.PRECISION provides a mechanism for controlling this conversion

and rounding.

Points to Remember

FLOAT.PRECISION influences UniData in the following ways:
1-188 UniData Commands Reference

■ Modifies operation of the UniBasic INT function based on the option

you select:

■ 0 – UniData truncates all digits after the decimal point; no

rounding occurs.

■ 1, 2, and 3 – UniData rounds numbers before converting them to

integers.

■ 4[,round] – Arithmetic operations in UniBasic truncate results at

the level of precision set by the UniBasic PRECISION function.

round further refines this option.

■ C internal double – UniData does not round the results of a C

function that performs internal double calculation.

Note: The UniBasic PRECISION command sets the number of decimal places

expressed for the current UniData session. The default is 4. For more

information, see the UniBasic Commands Reference.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

no option Displays the current FLOAT.PRECISION setting.

0 Default setting. UniData rounds numbers after conversion to
string format and after comparisons are made.

1 UniData rounds results after each calculation or comparison.

FLOAT.PRECISION Parameters
 1-189

Rounding Before Truncating with FLOAT.PRECISION 4, round

Because of the way the operating system represents floating point numbers,

FLOAT.PRECISION with option 4 may occasionally return unexpected

results, especially for users accustomed to Pick ® processing. Therefore, you

can specify round to round the number before truncation.

The point at which the number is rounded is calculated as PRECISION +

round. The default is 3.

For example, when PRECISION is set to 1, and round is 3, UniData rounds

up at the fourth position after the decimal point.

2 UniData rounds numbers at these times:

■ After conversion to string format

■ After relational operations.

■ Before executing the UniBasic INT (integer) function.

3 UniData converts the results of calculations to integers (executes
the UniBasic INT function). UniData rounds numbers before
comparisons.

■ If PRECISION is set to 5 or less, UniData adds 1 to the eighth

digit after the decimal point before rounding.

■ If PRECISION is set to a number greater than 5, UniData adds 1

to the digit two decimal places to the right of the precision

setting before rounding.

Note: See the example program run at the end of this section for an
illustration.

4[,round] Arithmetic operations in UniBasic truncate results at the level of
precision set by the UniBasic PRECISION function.

round further refines this option for compatibility with Pick®. The
point at which the number is rounded is calculated as PRECISION
+ round. Default is 3.

See “Rounding Before Truncating with FLOAT.PRECISION
4,round” following this table, for a complete description.

Parameter Description

FLOAT.PRECISION Parameters (continued)
1-190 UniData Commands Reference

Here is another illustration: Because of the operating systems previously

mentioned floating point representation, 4.7 may actually be represented

internally as 4.699999999999. Because of this, FLOAT.PRECISION 1 causes

UniBasic to return 4.6 rather than 4.7. Use FLOAT.PRECISION 4,round to

correct this, as shown in the following examples:

PRECISION 1 and FLOAT.PRECISION 4, 4

rounding point =1 +4 =5
4.699999999999 + .00005 = 4.700049999999

truncates correctly to 4.7.

PRECISION 1 and FLOAT.PRECISION 4 (remember, round defaults to 3)

rounding point =1 +3 =4
4.699999999999 + .0005 = 4.700499999999

also truncates correctly to 4.7.

We recommend that you not specify a large number for round. In general, the

operating system floating point calculations can handle a maximum of 14

significant digits, depending on your hardware and operating system. When

you exceed this maximum, the rightmost digits in the results of any

arithmetic calculations on the number are likely to be incorrect. The actual

number of digits used by the operating system to truncate a number depends

on the following:

d = I + MAX(F,(P+T))

■ d – The number of digits used to truncate.

■ I – The number of integer digits in the number.

■ F – The number of fractional digits in the number.

■ P – PRECISION.

■ T – round.

Tip: If d exceeds the maximum number of significant digits supported by your
operating system, truncation may be wrong. So, when I or PRECISION is large, keep
round small.
 1-191

Examples

If you execute FLOAT.PRECISION with no option, UniData returns the

current settings, as shown in the following example:

: FLOAT.PRECISION 4,6
: FLOAT.PRECISION
FLOAT.PRECISION mode 4 , 6

The following UniBasic program requests the user to input a setting for

PRECISION. Then the program performs some calculations and executes the

UniBasic INT function.

PRINT ““
PRINT “Enter PRECISION: “;INPUT prec.var
PRECISION prec.var
PRINT “4/3*2 = “:4/3*2
PRINT “8/3*2 = “:8/3*2
PRINT “INT(2.999999999) = “:INT(2.999999999)
PRINT “INT(2.999995999) = “:INT(2.999995999)
IF 2.999995999=3 THEN PRINT “2.999995999 = 3”
ELSE PRINT “2.999995999 # 3”
IF 2.999999999=3 THEN PRINT “2.999999999 = 3”
ELSE PRINT “2.999999999 # 3”
END
1-192 UniData Commands Reference

The following sample executions of the preceding program demonstrate how

different FLOAT.PRECISION and PRECISION settings affect results

produced by arithmetic calculations and the UniBasic INT function.

: FLOAT.PRECISION 0
: RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66667
8/3*2 = 5.33333
INT(2.999999999) = 2
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 # 3
: FLOAT.PRECISION 1
: RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66666
8/3*2 = 5.33334
INT(2.999999999) = 3
INT(2.999995999) = 3
2.999995999 # 3
2.999999999 # 3
: FLOAT.PRECISION 2
: RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66667
8/3*2 = 5.33333
INT(2.999999999) = 3
INT(2.999995999) = 3
2.999995999 = 3
2.999999999 = 3
 1-193

In this next execution, the result of applying the UniBasic INT function to

2.999995999 is 2 because UniData adds 1 to the eighth digit to the right of the

decimal point, causing the number to be rounded to 2.999996. Then, UniData

truncates all digits to the right of the decimal point in order to make the

number an integer. However, the result of the same procedure against

2.99999999 is 3 because the addition of 1 to the eighth digit results in 3, which

is an integer.

: FLOAT.PRECISION 3
: RUN BP precision.test
Enter PRECISION:
?5
4/3*2 = 2.66667
8/3*2 = 5.33333
INT(2.999999999) = 3
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 = 3

The next two executions demonstrate use of FLOAT.PRECISION option 4:

Compare the results of the first two operations in these executions to see that

results of arithmetic operations are truncated at the level of precision set by

the UniBasic PRECISION command.

Also, because PRECISION is applied before numbers are printed, option 4

causes 2.999995999 and 2.999999999 to be truncated to 2.99 in the last two

operations, so the program selects the # (not equal to) symbol: 2.999995999 #

3 and 2.999999999 # 3.

: FLOAT.PRECISION 4
: RUN BP precision.test
Enter PRECISION:
?2
4/3*2 = 2.66
8/3*2 = 5.32
INT(2.999999999) = 2
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 # 3
: RUN BP precision.test
Enter PRECISION:
?1
4/3*2 = 2.6
8/3*2 = 5.2
INT(2.999999999) = 2
INT(2.999995999) = 2
2.999995999 # 3
2.999999999 # 3
1-194 UniData Commands Reference

Related Commands

UniBasic

INT, PRECISION – For information, see the UniBasic Commands Reference.
 1-195

forcecp

Syntax

forcecp

Description

The system-level forcecp command forces a Recoverable File System (RFS)

checkpoint. A checkpoint flushes the system buffer and conducts other RFS-

related activities. For more information about the recoverable file system, see

Administering the Recoverable File System.

Execute this command at the system prompt, or use the ECL ! (bang)

command to execute this command from the ECL prompt.

Example

The following example illustrates the forcecp command from the ECL

prompt:

: !forcecp
CheckPoint time before ForceCP: Wed Jun 30 15:11:20 1999
.CheckPoint time after ForceCP: Wed Jun 30 18:00:21 1999
.CP has been forced successfully.
CP has been forced successfully
1-196 UniData Commands Reference

GETUSER

Syntax

GETUSER

Description

The ECL GETUSER command displays the user number, name, and ID for

the current UniData session:

■ USER NUMBER – The UNIX or Windows NT process ID (pid). All

UniData processes that are invoked in a single session use this pid.

■ USER NAME – The login name for this process.

■ USER ID – The ID for your login name assigned by UNIX or

Windows NT.

Example

In the following example, UniData displays a user number, name, and ID:

: GETUSER
USER NUMBER=2000
USER NAME =carolw
USER ID =1283

Related Command

LISTUSER
 1-197

GROUP.STAT

Syntax

GROUP.STAT [DICT] filename [LPTR]

Synonyms

GROUP-STAT, ISTAT

Description

The ECL GROUP.STAT command displays file and group statistics,

including size and number of records.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

DICT Analyzes the dictionary portion of the file.

filename The name of a UniData file to be analyzed.

LPTR Sends output to the printer instead of the terminal screen.

GROUP.STAT Parameters
1-198 UniData Commands Reference

Examples

The following example displays group statistics for the INVENTORY demo

file. During command execution a greater than sign (>) displays to represent

each record.

: GROUP.STAT INVENTORY
File = INVENTORY modulo=19 hash type=0 blocksize=1024
Split/Merge type = KEYONLY
Grp# Bytes Records
 0 764 9>>>>>>>>>
 1 628 8>>>>>>>>
 2 736 9>>>>>>>>>
 3 542 7>>>>>>>
 4 558 7>>>>>>>
 5 672 9>>>>>>>>>
 6 662 9>>>>>>>>>
 7 722 10>>>>>>>>>>
 8 736 10>>>>>>>>>>
 9 840 11>>>>>>>>>>>
 10 868 11>>>>>>>>>>>
 11 987 12>>>>>>>>>>>>
 12 757 11>>>>>>>>>>>
 13 642 8>>>>>>>>
 14 600 9>>>>>>>>>
 15 740 9>>>>>>>>>
 16 759 10>>>>>>>>>>
 17 697 9>>>>>>>>>
 18 595 7>>>>>>>
======= =====
 13505 175 Totals
 542 7 Minimum in a group
 987 12 Maximum in a group
 710.8 9.2 Averages per group
 110.66 1.44 Standard deviation from average
 0.16 0.16 Percent std dev from average
File has 1 over files, 1 prime files
: GROUP.STAT DICT INVENTORY
File = DICT INVENTORY modulo=1 hash type=0 blocksize=1024
Grp# Bytes Records

0 575 16>>>>>>>>>>>>>>>>
======= =====

575 16 Totals
575 16 Minimum in a group
575 16 Maximum in a group

575.0 16.0 Averages per group
0.00 0.00 Standard deviation from average
0.00 0.00 Percent std dev from average

The actual file size in bytes = 2048.
:

 1-199

The next example shows the sort of distribution that contributes to inefficient

file access. To generate the next example, memresize converted a copy of the

INVENTORY demo database file to the KEYDATA split/merge type

(inappropriate because of the wide variation in record sizes) and

REBUILD.FILE rehashed the keys:

: GROUP.STAT INV_COPY
File = INV_COPY modulo=69 hash type=0 blocksize=1024
Split/Merge type = KEYDATA
Grp# Bytes Records
 0 295 4>>>>
 1 0 0
 2 291 4>>>>
 3 0 0
 4 282 3>>>
 5 72 1>
 6 186 3>>>
 7 77 1>
 8 296 4>>>>
 9 93 1>
.
.
.
 67 153 2>>
 68 613 7>>>>>>>
======= =====
 13505 175 Totals
 0 0 Minimum in a group
 687 8 Maximum in a group
 195.7 2.5 Averages per group
 169.26 2.10 Standard deviation from average
 0.86 0.83 Percent std dev from average
File has 1 over files, 1 prime files
:

1-200 UniData Commands Reference

gstt

Syntax

gstt

Description

The system-level gstt command displays the status and usage of global

pages of shared memory. See the Administering UniData manual for more

information on shared memory.

Use this command at the system prompt, or use the ECL (bang) command to

execute this command from the ECL prompt.

Example

The following example illustrates a gstt command display:

% gstt
--------------------- GCTs Statistics -------------------

Total GCTs (GSMs allowed): 40
Pages/GSM................: 32 (4096K bytes)
Bytes/Page...............: 128K bytes

GCTs used (GSMs created).: 1 (3% of 40)

 Active GSMs....: 1 (32 pages in total, 4096K bytes)

 Pages Used...........: 2 (6%, 256K bytes)
 Pages Freed..........: 30 (94%, 3840K bytes)

 Inactive GSMs..: 0

 Pages Freed..........: 0 (0K bytes)

 Total Pages Used......: 2 (6%, 256K bytes)
 Total Pages Freed.....: 30 (94%, 3840K bytes)
 Total memory allocated: 4096K bytes
 ----------------- End of GCTs Statistics ----------------
 1-201

guide

Syntax

guide filename [filename...] [-b [b_filename] | -nb] [-d {1 | 2 | 3 } [{-l | -s} count]]
[[-o [o_filename] [-p page_length] | -np] [-na] [-ne] [-ns] | [-a [a_filename] |

-na] [-e [e_filename]] [-s [s_filename]] [-f [f_filename]] [-h {a | 0 | 1 }

[-m new_modulo]] [-i [i_filename]] [-r [r_filename]] [-Z num_child_processes] [-

U###]

Description

The system-level guide command analyzes hashed files, generates statistics,

and provides suggestions for optimizing file sizes and ensuring data

integrity. UniData must be running when you execute guide.

Default reports include:

■ Management advice (option -a)

■ File errors (option -e)

■ Detailed statistics (option -s [s_filename])

■ Damaged groups (option -f)

For detailed information about using guide to assess file damage and to

manage file integrity, refer to the Administering UniData manual.

You must have read and write permissions on files analyzed.

guide no longer requires exclusive access to a file, and utilizes parallel

processing.

 Although guide analyzes recoverable files, the output of guide is not recov-

erable. Therefore, if a system or media failure occurs while you are running

guide, you need to rerun guide after recovery. For more information about

the guide utility and recoverable files, see the Administering the Recoverable
File System manual.

Because new files are created by each execution, you should review and

delete unneeded ones or you may accumulate a large number of them.
1-202 UniData Commands Reference

Tip: Once you have identified damaged groups with guide, use the UniData system-
level fixfile command to repair them.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename [filename...] Specifies the file or files to analyze. Separate multiple
file names with a space. You must have read and write
access to these files.

-b [b_filename] Summarizes file analysis in b_filename. Default file
name is GUIDE_BRIEF.LIS.

-nb Default. No summary report is generated.

-d {1 | 2 | 3} Reports on file size:

1 — Summarizes file size info.

2 — Default; reports file size info.

3 — Adds information about distribution of data sizes.

Note: Cannot be used with the -ns option.

{-l | -s} count Adds to information displayed by -d. Displays, in
quotation marks, keys of smallest records. Key ends
with * if truncated. count specifies number to list.
Default is 3.

-l — lists keys only

-s — sorts and lists keys

Note: Must be combined with the -d option.

-o[o_filename] Combines output in filename, rather than placing it in
separate files. If filename is not specified, sends
combined output to the standard output device. The
default output device is the display terminal.

Tip: Specify output device at the operating system
level (for example, stty in UNIX).

guide Parameters
 1-203

-p page_length When output from option -o is directed to the
terminal, specifies display page length. Default is 24
lines.

At end of page display, UniData prompts: Press
RETURN to continue... You must respond with
one of the following:

ENTER — Displays the next page.

N — Scrolls the remainder of the output with no
pagination.

Q — Quits display.

-np Default. Scrolls output on terminal with no
pagination.

-na No management advice is reported. This is the
opposite of the -a parameter.

-ne No detailed error reporting. This is the opposite of the
-e parameter.

-ns Default. No detailed statistical reporting. This is the
opposite of the -s parameter.

-a [a_filename] Default. Reports file management advice in a_filename.
Default file name is GUIDE_ADVICE.LIS.

-e [e_filename] Default. Reports statistical errors in e_filename. Default
file name is GUIDE_ERRORS.LIS.

-s [s_filename] Default. Reports detailed statistical information in
s_filename. Default file name is GUIDE_STATS.LIS.

-f [f_filename] Default. Reports damaged groups in f_filename.
Default f_filename is GUIDE_FIXUP.DAT.

f_filename can be used as input for ECL commands
fixfile, dumpgroup, and fixgroup.

Parameter Description

guide Parameters (continued)
1-204 UniData Commands Reference

-h {a | 0 | 1} Evaluates hash algorithms of type:

■ a — evaluates both types

■ 0

■ 1

Note: This option produces no output for dynamic
files.

-m new_modulo Analyzes the effects a different modulo would have on
filename. Must be used with the -h parameter.

-i [i_filename] Analyzes all files listed ini_filename. Default
file name is GUIDE_INPUT.DAT. Ini_filename,
list one file name per line. Blank lines and lines
beginning with ! are ignored.

-r [r_filename] Directs output to UniData databaser_filename.
r_filename must be the system-level file name.
Copy the dictionary forr_filename from
udthome/sys/D_UDT_GUIDE on UNIX or
udthome\sys\D_UDTGUIDE on Windows
Platforms. Later, you can execute UniQuery
commands againstr_filename.

-Z num_child_processes Defines the number of concurrent processes to use
when analyzing the file. The default is 4. If the file
guide is analyzing has less than 100 groups, guide
only uses one process.

-U### Searches files for the existence of the ASCII character
you specify in the records and keys in the file.

Parameter Description

guide Parameters (continued)
 1-205

Output Reports

Depending on the parameter you include, guide may create any or all of the

following reports. If any of these output files exist when you execute guide,

UniData changes all output file names by appending a six-digit time stamp

to each file name. This way, only the most current output files have no time

stamp; and if a particular output file is not created during this execution, no

file of that name exists.

Using the U### Option

If you use the U### option, guide searches files for the existence of the ASCII

character you specify in the records and keys in the file. For example, guide

-U0 searches files for CHAR(0).

Report Default File Name Parameter Description

File management
advice

GUIDE_ADVICE.LIS -a Provides advice for
improving file
sizing or cleanup.

File errors GUIDE_ERRORS.LIS -e Lists structural
errors.

Detail GUIDE_STATS.LIS -s Details statistics on
filename.

Summary GUIDE_BRIEF.LIS -b Summarizes record
counts, total size,
used size, and
modulo.

Damaged groups GUIDE_FIXUP.DAT -f Lists damaged
groups. This file can
be used as input for
ECL commands
fixfile, dumpgroup,
and fixgroup.

guide Output Files
1-206 UniData Commands Reference

If guide encounters the character you specify, it returns a message similar to

the following example:

TEST
File Integrity:

Group 0, block 1, record number 0 = “AAA” has char (0) in key
Group 0, block 1, record number 0 = “AAA” record has char (0)
in data
Group 0, block 0, long record number 1 = “BBB” record has
char (0) in data.
Group 2, block 5, long record number 0 = “AAA” record has
char (0) in data.

Files Processed: 1
Errors encountered: 4

Note: Using the -U### option may degrade the performance of guide.

Examples

The following report is generated by the -s [s_filename] parameter. By default,

it is stored in GUIDE_STATS.LIS:

INVENTORY
Basic statistics:

 File type............................... Recoverable Dynamic
Hashing

File size
[dat001].............................. 20480
[over001]............................. 9216

File modulo............................. 19
File minimum modulo..................... 19
File split factor....................... 60
File merge factor....................... 40
File hash type.......................... 1
File block size......................... 1024

Group count:
Number of level 1 overflow groups....... 8
Primary groups in level 1 overflow...... 8

Record count:
Total number of records................. 175
Average number of records per group..... 9.21
Standard deviation from average......... 3.58

Record length:
Average record length................... 71.20

 Standard deviation from average......... 18.30
 1-207

This output was generated on a damaged version of the INVENTORY file:

: !guide INVENTORY -o

INVENTORY
 Basic statistics:
 File type............................... Recoverable Dynamic
Hashing
 File size
 [dat001].............................. 20480
 [over001]............................. 3072
 File modulo............................. 19
 File minimum modulo..................... 19
 File split factor....................... 60
 File merge factor....................... 40
 File hash type.......................... 0
 File block size......................... 1024
 File Integrity:
 Group 2, block 3 has incorrect group number 1633746946
 Management advice:
 This file’s integrity has been compromised,
 please repair it.

Files processed: 1
Errors encountered: 1

The following file listing shows a set of files produced over a four-day period.

Notice the following:

■ Only GUIDE_FIXUP.DAT has no time stamp, indicating that this is

the only file created during the last execution of guide. This was the

execution in the preceding example.
1-208 UniData Commands Reference

■ GUIDE_STATS.LIS_032798_A is the latest version of this file, indicating

that this file was not created during the last two executions of guide.

: ls -lt GUI*
-rw-r--r-- 1 carolw staff 15 Mar 27 15:36
GUIDE_FIXUP.DAT
-rw-r--r-- 1 carolw staff 154 Mar 27 15:34
GUIDE_ADVICE.LIS_032798_B
-rw-r--r-- 1 carolw staff 1787 Mar 27 15:34
GUIDE_ERRORS.LIS_032798_B
-rw-r--r-- 1 carolw staff 15 Mar 27 15:34
GUIDE_FIXUP.DAT_032798
-rw-r--r-- 1 carolw staff 555 Mar 27 15:34
GUIDE_STATS.LIS_032798_B
-rw-r--r-- 1 carolw staff 46 Mar 27 15:20
GUIDE_ADVICE.LIS_032798_A
-rw-r--r-- 1 carolw staff 46 Mar 27 15:20
GUIDE_ERRORS.LIS_032798_A
-rw-r--r-- 1 carolw staff 46 Mar 27 15:20
GUIDE_STATS.LIS_032798_A
-rw-r--r-- 1 carolw staff 46 Mar 27 15:16
GUIDE_ADVICE.LIS_032798
-rw-r--r-- 1 carolw staff 46 Mar 27 15:16
GUIDE_ERRORS.LIS_032798
-rw-r--r-- 1 carolw staff 46 Mar 27 15:16
GUIDE_STATS.LIS_032798
-rw-r--r-- 1 carolw staff 14 Mar 26 15:49
GUIDE_FIXUP.DAT_032698
-rw-r--r-- 1 carolw staff 46 Mar 24 11:20
GUIDE_ADVICE.LIS_032498
-rw-r--r-- 1 carolw staff 46 Mar 24 11:20
GUIDE_ERRORS.LIS_032498_B
-rw-r--r-- 1 carolw staff 1497 Mar 24 11:20
GUIDE_STATS.LIS_032498_B
-rw-r--r-- 1 carolw staff 46 Mar 24 11:19
GUIDE_ERRORS.LIS_032498_A
-rw-r--r-- 1 carolw staff 1848 Mar 24 11:19
GUIDE_STATS.LIS_032498_A
-rw-r--r-- 1 carolw staff 46 Mar 24 11:18
GUIDE_ERRORS.LIS_032498
-rw-r--r-- 1 carolw staff 1497 Mar 24 11:18
GUIDE_STATS.LIS_032498

Related Commands

dumpgroup, fixfile, fixgroup, verify2
 1-209

guide_ndx

Syntax

guide_ndx{-x |-X}{1|2 |3},{index_names, ... | ALL} [-t template |-T template]

filename

Description

As with other UniData file types, an index file could become corrupt due to

hardware failures, the interruption of a write to the index file, or an

incomplete write. The guide_ndx utility checks for physical and logical

corruption of an index file.

If an index file is corrupt, UniData displays a run time error when a UniData

process tries to access the index. If the index file is associated with a

recoverable file, a message is written to the sm.log.

The guide_ndx command creates two files, the GUIDE_XERROR.LIS and the

GUIDE_STATS.LIS. GUIDE_ERROR.LIS lists any corruption found in the

index file, and GUIDE_STATS.LIS list statistics about the index. If you have a

corrupt index, you must rebuild it using the CREATE.INDEX and

BUILD.INDEX commands. For more information and creating and building

indexes, see Using UniData.

Note: We recommend deleting the index with the DELETE.INDEX ALL command.
Using the ALL option deletes all alternate key indexes and the index file itself.
1-210 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Example

The following example illustrates the contents of the GUIDE_XERROR.LIS

file when guide_ndx detects corruption:

%pg GUIDE_XERROR.LIS
INVENTORY
Checking index ‘INV_DATE’ physically...
Invalid key length (30569, key item 65) in node 24576.
Bytes left not matched (recorded 3157, calulated 4933) in node
24576.
Checking index ‘FEATURES’ physically...
Checking index ‘COLOR’ physically...

Parameter Description

-x{1 | 2 | 3} Determines the type of checking guide_ndx performs.

■ 1 – Performs physical checking

■ 2 – Performs logical checking

■ 3 – Performs physical and logical checking

index_names The index names you want guide_ndx to check. Separate
each index name with a comma, or enter ALL to check all
indexes for the file.

-t template The template to use for output files. The default is
GUIDE.

filename The name of the data file containing the index.

guide_ndx Parameters
 1-211

The next example illustrates the GUIDE_XSTATS.LIS file:

%pg GUIDE_XSTATS.LIS
INVENTORY
Large index.......... INVENTORY/idx001
Alternate key length. 60
Node/Block size...... 6K
OV blocks............ 1
of indices......... 3
Index auto update.... Enabled, No updates pending
Index Name F-type V-type K-type Nulls Dups F-No/VF-pos (Root)
INV_DATE D S N Yes Yes 1 (24576 [1-4])
FEATURES D S T Yes Yes 4 (30720 [1-5])
COLOR D M T Yes Yes 5 (36864 [1-6])

The following table describes the column heading that display in output for

the X_STATS.LIS file.

Column Heading Description

Index name Name of the index.

F-type Type of attribute indexed: D for data attribute, V for a virtual
attribute.

V-type Value code for the attribute. S for singlevalued, M for multi-
valued or multi-subvalued.

K-type Type of index: Txt for text, Num for numeric.

Nulls “Yes” indicates that empty strings are indexed. “No” indicates
that empty strings are not indexed.

Dups “Yes” indicates that duplicate keys are allowed in the alternate
key index. “No” indicates that duplicate keys are not allowed.

F-No/VF-expr The attribute location for alternate key indexes built on data
attributes (D-type) or the virtual attribute definition for
alternate key indexes built on virtual attributes (V-type).

X_STATS.LIS Display
1-212 UniData Commands Reference

HASH.TEST

Syntax

HASH.TEST filename [(B | (H | (N | (P]

Synonym

HASH-TEST

Description

The ECL HASH.TEST command manipulates certain characteristics of a

UniData data file in a test environment without changing the actual

parameters of the file. When you use this command, UniData prompts for

values for modulo number, hash type, and block size multiplier.

Note: For a block size of 512 bytes, UniData accepts either -1 or 512 at the block size
multiplier prompt. Otherwise, UniData uses the block size multiplier. For example,
1=1024, 2=2048, and so on.

UniData calculates statistics based upon these user-supplied values and the

contents of the file, and then displays the following data:

■ Average number of items per group.

■ Average number of bytes per group.

■ Number of empty groups.

■ Standard deviation.
 1-213

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The name of a UniData data file.

(B Suppresses the initial linefeed.

(H Generates a histogram and detailed information for every
group.

(N Suppresses automatic paging.

(P Sends output to the printer.

HASH.TEST Parameters
1-214 UniData Commands Reference

Example

In the following example, UniData prompts for test values and then

calculates theoretical statistics for the CLIENTS demo file. The actual

parameters for the data file have not changed. The user has entered a block

size multiplier of 2, indicating a block size of 2048. Also, the (H option

produces detailed information on each group including number of bytes and

items, as well as a histogram indicating relative size.

: HASH.TEST CLIENTS (H
TEST MODULO: 23
HASH TYPE: 1
BLOCK SIZE(K, -1 for 512): 2

FILE: CLIENTS MOD: 23 HASH TYPE: 1 16:11:54 Jun 09
1999
 BYTES ITEMS
 0 779 7 *>>>>>>>
 1 422 4 *>>>>
 2 661 6 *>>>>>>
 3 803 7 *>>>>>>>
 4 741 7 *>>>>>>>
 5 922 8 *>>>>>>>>
.
.
.
ITEM COUNT= 134, BYTE COUNT 14586, AVG. BYTES/ITEM= 109
AVG. ITEMS/GROUP=5.8, STD. DEVIATION=1.8, AVG. BYTES/GROUP=634.2
EMPTY GROUPS= 0

:

 1-215

HELP

Syntax

HELP [topic] [command] [-k keyword]]

Description

The ECL HELP command displays online help for UniData commands,

including the following topics:

■ UniData ECL commands and keywords, including commands you

enter at the system prompt. You can enter synonyms for commands

from legacy applications.

■ UniBasic commands, functions, and operators.

■ UniQuery commands and keywords.

■ UniData SQL commands and keywords.

If you use this command without any options, UniData displays command

syntax and indicates valid topics.

Tip: You can access the UniData help system from within AE by using XEQ (execute
ECL command). For example, from within AE enter “XEQ HELP OPEN” to display
help on the UniBasic OPEN command.
1-216 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Parameter Description

command Any UniBasic, UniData, UniQuery, or UniData SQL command.

If the command contains multiple words separated by a space, such
as CREATE TABLE in UniData SQL and INPUT @ in UniBasic, you
must enclose the command in quotation marks.

topic A subject. These are product names (for example, UNIDATA,
UNIBASIC, UNIQUERY, or SQL). If you enter a topic without a
command, HELP lists all the available commands for that topic. You
can also enter a command with a topic to specify which command to
display if there is more than one topic with the same command. For
example, there are three SELECT commands (UniQuery, UniData
SQL, and UniBasic).

-k keyword Indicates a word to search for in the help system. This feature is not
case-sensitive.

HELP Parameters
 1-217

HUSH

Syntax

HUSH [ON | OFF]

Description

The ECL HUSH command turns on or off system output display on the

terminal.

Warning: Do not use HUSH ON before you execute a command, paragraph, or
sentence that requests user input. The process will appear to hang.

Parameters

The following table describes each parameter of the syntax.

Examples

In the following example, the HUSH command prevents UniData from

displaying the colon prompt, command lines, and the output that follows

until the HUSH OFF command is entered. For this example, a UniQuery

statement and HUSH OFF follow HUSH ON.

: HUSH ON
:

Parameter Description

no parameter Toggles between ON and OFF.

ON UniData does not display the colon prompt nor any output to
the terminal.

OFF Default. UniData displays the colon prompt and output to the
terminal.

HUSH Parameters
1-218 UniData Commands Reference

To verify that UniData recognized the command input after the HUSH ON

command was entered, display the command stack. In the following

example, notice item number 2. This is the command that was entered while

HUSH ON was active.

:. L
...
 3 HUSH ON
 2 LIST CLIENTS WITH LNAME LIKE "P..."
 1 HUSH OFF
:

 1-219

HUSHBASIC

Syntax

HUSHBASIC [ON | OFF]

Description

The ECL HUSHBASIC command determines whether brief or detailed

UniBasic error messages are displayed.

For more information about UniBasic, see the Developing UniBasic
Applications manual.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

no parameter Toggles between ON and OFF.

ON Displays brief UniBasic error messages.

OFF Displays detailed UniBasic error messages.

HUSHBASIC Parameters
1-220 UniData Commands Reference

Example

The following example compares the brief versus detailed error message

displayed when HUSHBASIC is ON and OFF using first the keywords ON

and OFF, then executing HUSHBASIC with no keyword, toggling between

the two settings.

: HUSHBASIC OFF
: RUN BP TESTPROG
In at line 1 can not find object/catalog file: 'BP/_TESTPROG'.
: HUSHBASIC ON
: RUN BP TESTPROG
can not find object/catalog file: 'BP/_TESTPROG'.
: HUSHBASIC
: RUN BP TESTPROG
In at line 1 can not find object/catalog file: 'BP/_TESTPROG'.
: HUSHBASIC
: RUN BP TESTPROG
can not find object/catalog file: 'BP/_TESTPROG'.
 1-221

ipcstat

Syntax

ipcstat [-q] [-m] [-s]

Description

The system-level ipcstat command displays the status of interprocess

communication (IPC) facilities. In addition, UniData provides the names of

the UniData processes associated with each resource.

For detailed information about this utility, see the section on managing IPC

facilities in the Administering UniData manual.

Note: Use this command at the system prompt, or use the ECL ! (bang) command to
execute this command from the colon prompt.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

no parameter Displays the status of all message queue, shared memory, and
semaphores.

-q Displays status of message queues.

-m Displays status of shared memory.

-s Displays status of semaphores.

ipcstat Parameters
1-222 UniData Commands Reference

9/20/02
Example

The following example shows an ipcstat display. Where unknown appears in

the output, resources were created by non-UniData processes.

%ipcstat
 1-223

ISTAT
ISTAT is a synonym for the GROUP.STAT command. For more information,

see GROUP.STAT.

Synonyms

GROUP.STAT, GROUP-STAT
1-224 UniData Commands Reference

 1-225

kp

Syntax

kp

Description

The system-level kp command reports on current UNIX kernel parameters

related to shared memory, semaphores, and message queues. This command

is supported on UniData for UNIX only. The report is routed to the display

terminal. See your UNIX system documentation for explanations of these

kernel parameters.

Note: If you are not logged on as root, some items in the report may display as -1.
This indicates that the values for that item are not available to you.

Use this command at the system prompt, or use the ECL (bang) command to

execute this command from the ECL prompt.

Example

The following is a sample kp report:

kp
shmmni = 200
shmseg = 120
shmmax = 67108864
shmmin = 1

msgmni = 100
msgtql = 40
msgmnb = 16384
msgmax = 8192

semmni = 64
semmnu = 100

LIMIT

Syntax

LIMIT

Description

The ECL LIMIT command displays maximum size limits for elements of

UniData. These limits are not configurable.

See Using UniQuery for more information on limits to UniQuery parameters.

Example

The following example shows UniData limits:

: LIMIT
U_MAXFNAME: Unix file name limit = 46.
U_NAMESZ: Record id(key) size = 126.
U_SELEMAX: Number of select list = 10.
U_MAXDATA: Number of DATA statement = 500.
U_HEADSZ: HEADER/FOOTER length = 2120.
U_MAXHASHTYPES: Number of hash functions = 3.
U_MAXSORT: Number of sort fields(BY...) in LIST = 20.
U_MAXWITH: WITH stack size = 120.
U_MAXWHEN: WHEN stack size = 60.
U_MAXCAL: Number of SUM+AVG+PCT+CAL in LIST = 54.
U_MAXBREAK: Number of BREAK.ON+BREAK.SUP in LIST = 15.
U_MAXLIST: Number of attribute names in LIST = 999.
U_LINESZ: Page width in printing = 272.
U_PARASIZE: Paragraph name and its parameter size = 256.
U_LPCMD: System spooler name = lp -c .
U_MAXPROMPT: Number of prompts allowed in paragraph = 60.
U_FSIZE: Dictionary field name size = 31.
U_MAXVALUE: Number of values WHEN can handle = 10240.
U_MAXBYEXPVAL: Number of values BY.EXP can handle = 10240.
U_SENTLEN: Maximum sentence length = 9247.
U_PROCBUFSZ: Proc buffer size = 4095.
U_NIDES: Maximum number of virtual fields in query= 256.
:

1-226 UniData Commands Reference

LINE.ATT

Syntax

LINE.ATT line [DELAY]

Synonym

LINE-ATT

Description

The ECL LINE.ATT command attaches a communication line to the current

process. The attaching process then has exclusive use of that line until it is

detached with the LINE.DET command. A single process can attach up to

five resources per UniData session.

Warning: On some platforms, you must specify DELAY in LINE.ATT to avoid
problems with subsequent UniBasic SEND commands overlaying data.

Before you can use this command, you must execute the SETLINE command

to initialize the communications line.

Tip: Tape devices, printers, and other devices must be defined within UniData before
they can be accessed. Refer to your host operating system documentation for
information about setting up peripherals on your system. For information on
defining devices within UniData, see Administering UniData.
 1-227

Parameters

The following table describes each parameter of the syntax.

Example

In the following example, UniData attaches line 0 to the current process:

:LINE.ATT 0
LINE 0 ATTACHED

Related Commands

UniData

LINE.DET, LINE.STATUS, PROTOCOL, SETLINE, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.

Parameter Description

line A number assigned to the (line) device you are attaching. The line
number is defined by the SETLINE command.

DELAY Your process waits for a “received” message before allowing further
activity by the process. This option does not time out, but waits
indefinitely.

LINE.ATT Parameters
1-228 UniData Commands Reference

LINE.DET

Syntax

LINE.DET line

Synonym

LINE-DET

Description

The ECL LINE.DET command releases a communication line so it is no

longer reserved for the exclusive use by the current user process.

Note: You can concurrently attach up to five lines per UniData session. Use
SETLINE to define the lines and LINE.ATT to attach them.

Tip: Tape devices, printers, and other devices must be defined within UniData before
they can be accessed. Refer to your host operating system documentation for
information about setting up peripherals on your system. for information on defining
devices within UniData, see Administering UniData.

Examples

In the following example, the LINE.DET command detaches line 0 from the

current environment:

: LINE.DET 0
LINE 0 DETACHED
 1-229

Related Commands

UniData

LINE.ATT, LINE.STATUS, PROTOCOL, SETLINE, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
1-230 UniData Commands Reference

LINE.STATUS

Syntax

LINE.STATUS

Synonym

LINE-STATUS

Description

The ECL LINE.STATUS command displays the current status of all

communication lines.

Tip: Tape devices, printers, and other devices must be defined within UniData before
they can be accessed. Refer to your host operating system documentation for
information about setting up peripherals on your system. For information on
defining devices within UniData, see Administering UniData.

Example (UniData for UNIX)

In the following example, UniData displays all communication lines:

: SETLINE 0 /dev/pty/ttyv6
: LINE.STATUS
LINE# STATUS UDT# USER-NAME DEVICE-NAME
0 Available N/A N/A /dev/pty/ttyv6
Line number(s) are attached by the current udt process:

None
:

 1-231

Example (UniData for Windows Platforms)

In the following example, UniData displays all the lines in the system set by

SETLINE:

:SETLINE 0 COM1
:LINE.STATUS
LINE# STATUS UDT# USER-NAME DEVICE-NAME
0 Available N/A N/A COM1
Line number(s) are attached by the current udt process:
None
:

Related Commands

UniData

LINE.ATT, LINE.DET, PROTOCOL, SETLINE, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
1-232 UniData Commands Reference

LIST.CONNECT

Syntax

LIST.CONNECT

Synonym

LIST-CONNECT

Description

The LIST.CONNECT command displays NFA (Network File Access)

parameters for all connections. When you enter LIST.CONNECT, UniData

displays the following information about server connections:

■ UniData process number.

■ USRNBR (System-level process ID assigned to a UniData session).

■ UID (system-level user ID).

■ User name.

■ Type of user, for example client (udt/clnt) or server (udt/svr).

■ Family.

■ Domain.

For more information on NFA, see Developing OFS/NFA Applications.
 1-233

LIST.CONNECT Display

The following table describes the column headings that display in the output

for the LIST.CONNECT command.

Example

In the following example, UniData displays the current NFA users:

: LIST.CONNECT
UDTNO USRNBR UID USRNAME USRTYPE FAMILY DOMAIN
3 18910 1104 ubj01 udt UDT hp1:/users/ubj01:1155
8 19156 1083 peggys udt UDT hp1:/users/ubj01:1155

Column Heading Description

UDTNO The UniData user number.

USRNBR System-level process ID assigned to a UniData session.

UID The system-level user ID number.

USRNAME The user name.

USRTYPE The type of process. For NFA, this is always “udt.”

FAMILY The OFS Family (for NFA, this is always UDT) described in the
VOC entry for the file being accessed.

DOMAIN Information on the domain described in the VOC entry for the
file being accessed. It is in the following syntax:

machine:voc:port

where machine is the name of the server machine, voc is the path
of the VOC file, and port is the port number being used.

LIST.CONNECT Display
1-234 UniData Commands Reference

LIST.INDEX

Syntax

LIST.INDEX filename [attribute [attributeM...attributeN] | ALL] [STATISTICS

| STATS |DETAIL] [NO.PAGE] [LPTR n]

Synonym

LIST-INDEX

Description

The ECL LIST.INDEX command displays information about alternate key

indexes for a particular data file.

If LIST.INDEX completes successfully, UniData sets

@SYSTEM.RETURN.CODE to the number of indexes listed. If LIST.INDEX

does not complete successfully, UniData sets @SYSTEM.RETURN.CODE to

 -1.

For detailed information about indexes, see Using UniData.

Using Indexes Created in an Earlier Release

Keep the following in mind when upgrading or using an index that was

created with and earlier release of UniData:

■ On UniData for UNIX, when upgrading from a release earlier than

3.3, you need to rebuild indexes. UniData added a time stamp

feature at Release 3.3.

■ Indexes created at Release 4.1 of UniData for UNIX or Release 3.6 of

UniData for Windows NT, are not backwardly compatible.

Beginning with these releases, indexes were no longer compressed.

Tip: Use the UniBasic INDICES function to find out when an index was created.
 1-235

Parameters

The following table describes each parameter of the syntax.

Examples

For the following example, we first created three alternate key indexes on the

ORDERS file. UniData displays information about these indexes:

: LIST.INDEX ORDERS
Alternate Key Index Details for File ORDERS Page 1
File.................. ORDERS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (1 in use, 0 overflowed)
Indices............... 3 (1 D-type)

Parameter Description

filename The name of the UniData file.

attribute | ALL Indicates one or more alternate key indexes to be
examined. If you do not stipulate attribute, UniData
displays all alternate key indexes for the file.

STATISTICS | STATS Lists detailed statistical information about alternate key
indexes on filename. If you do not indicate the alternate
key index name (attribute), UniData provides statistics for
all alternate key indexes.

Note: Using this keyword on large files may adversely
affect system performance.

DETAIL Displays index entries.

NO.PAGE Prevents the report from pausing at the end of each
display page.

LPTR n Directs the report to logical printer n.

LIST.INDEX Parameters
1-236 UniData Commands Reference

LIST.INDEX Display

The following table describes the column heading that display in output for

the LIST.INDEX command.

Column Heading Description

Index name Name of the index.

F-type Type of attribute indexed: D for data attribute, V for a virtual
attribute.

K-type Type of index: Txt for text, Num for numeric.

Built “No” indicates that the index has not been built using the
BUILD.INDEX command; “Yes” indicates that the index has
been built.

Empties “Yes” indicates that empty strings are indexed. “No” indicates
that empty strings are not indexes.

Dups “Yes” indicates that duplicate keys are allowed in the alternate
key index. “No” indicates that duplicate keys are not allowed.

In-DICT “Yes” indicates that the dictionary contains an attribute with the
same name as the index.

S/M “S” indicates that the indexed attribute is singlevalued. “M”
indicates that the indexed attribute is multivalued.

F-No/VF-expr The attribute location for alternate key indexes built on data
attributes (D-type) or the virtual attribute definition for alternate
key indexes built on virtual attributes (V_type).

LIST.INDEX Display
 1-237

STATISTICS Display

The following table describes the column headings that display in the output

for the LIST.INDEX command when you include the STATISTICS keyword.

Column Heading Description

Index name The index for which statistics are provided.

of Keys The total number of alternate key values in the index.

of OV Keys The total number of overflowed key values in the index.

Records per Alternate
key

The average, minimum, and maximum number of
records associated with each of the alternate key values.

STATISTICS Display
1-238 UniData Commands Reference

The following example shows the STATISTICS display for a group of

alternate key indexes that we created for the ORDERS demo file. Page 2

contains the statistics.

: LIST.INDEX ORDERS STATISTICS
Alternate Key Index Details for File ORDERS Page 1
File.................. ORDERS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (0 in use, 0 overflowed)
Indices............... 4 (1 D-type)
Index updates......... Enabled, No updates pending
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-no/VF-
expr....
NAME V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,
CLIENT_NO,’FNAME‘,’X’): “ “: TRANS(‘CLIENTS’,CLIENT_NO,’LNAME’,’
X’)
GRAND_TOTAL V Num Yes Yes Yes Yes S PRICE*QTY; SUM(S

OV blocks............. 1 (0 in use, 0 overflowed)
Indices............... 4 (1 D-type)
Index updates......... Enabled, No updates pending
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-no/VF-
expr....
NAME V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,
CLIENT_NO,’FNAME‘,’X’): “ “: TRANS(‘CLIENTS’,CLIENT_NO,’LNAME’,’X’)
GRAND_TOTAL V Num Yes Yes Yes Yes S PRICE*QTY; SUM(SUM(@1))
COUNTRY V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,CLIENT_NO,’COUNTRY’,’X’)
PRODUCT_NO D Num Yes Yes Yes Yes M 4
Details for Index NAME in File ORDERS Page 2
Alternate Key Value # of Records for Key Overflowed
1 No
Adam Monterey 4 No
Al Elliott 1 No
Alicia Rodriguez 4 No
Andre Halligan 1 No
...
Statistics:
Records per Alternate Key
Index name # of Keys # of OV Keys Average Minimum Maximum
NAME 69 0 2.8 1 7
Details for Index GRAND_TOTAL in File ORDERS Page 6
Alternate Key Value # of Records for Key Overflowed
$0.00 1 No
$17.99 1 No
$39.95 1 No
$42.89 1 No
...
Statistics:
Records per Alternate Key
Index name # of Keys # of OV Keys Average Minimum Maximum

GRAND_TOTAL 189 0 1.0 1 2
...
 1-239

Related Commands

BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX,

ENABLE.INDEX,UPDATE.INDEX
1-240 UniData Commands Reference

LIST.LANGGRP

Syntax

LIST.LANGGRP

Synonym

LIST-LANGGRP

Description

The ECL LIST.LANGGRP command displays the current language group

ID. For more information about using UniData in languages other than

English, see UniData International.

Language Group ID

The following table shows the UniData language names (udtlang) and the

language group identifiers.

Example

The following example shows a LIST.LANGGRP display:

: LIST.LANGGRP
Current language group ID: 255/192/129

Group # udtlang Name Language Group ID

Group 1 English (US, UK) 255/192/129

Group 2 Japanese (EUC)
French (ISO8859-1)
English_G2 (English)

159/130/129

UniData Language Groups
 1-241

LIST.LOCKS

Syntax

LIST.LOCKS

Synonym

LIST-LOCKS

Description

The ECL LIST.LOCKS command displays all locks currently set on system

resources.

For more information on creating and clearing locks on system resources, see

the CLEAR.LOCKS and LOCK commands.

Any of the following UniData commands can issue locks that LIST.LOCKS

displays.

Command How Lock Is Released

acctrestore UniData releases the lock when the account is restored (UniData
finishes reading the tape).

LINE.ATT ECL command. LINE.DET releases the lock.

LOCK UniBasic statement. UNLOCK releases the lock. For more infor-
mation, see the UniBasic Commands Reference.

LOCK num ECL command. BYE or a UniBasic UNLOCK statement releases
the lock.

PHL num PQN command.

T.ATT ECL command. T.DET releases the lock.

Commands That Issue UniData Locks
1-242 UniData Commands Reference

Example (UniData for UNIX)

In the following example, UniData displays the status of all system resources

that are locked:

: LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
1 2253 1283carolw ts/1 semaphor -1 0 1 X 10:44:29 Jul 31
6 2365 1283carolw ts/6 semaphor -1 0 2 X 10:44:29 Jul 31

LIST.LOCKS Display

The following table describes the column headings that display in the output

for the LIST.LOCKS command.

Column Heading Description

UNO Sequential number UniData assigns to the UniData session.

UNBR Process Group ID (pid) of the user setting the lock.

UID User ID of the user setting the lock.

UNAME Login name of the user setting the lock.

TTY Terminal device of the user setting the lock.

FILENAME File name in which the record is locked.

INBR I-node of the locked file.

DNBR Used in conjunction with INBR to define the file at the
operating system level.

RECORD ID Record ID of the locked record.

M Record lock mode.

TIME The time at which the lock was set.

DATE The date on which the lock was set.

LIST.LOCKS Display
 1-243

Example (UniData for Windows Platforms)

In the following example, UniData displays the status of all system resources

that are locked:

: LIST.LOCKS
UNO UNBR UID UNAME FILE NAME RECORD ID M TIME DATE
002 122 1000 claireg semaphore 64 X 10:44:29 Jul 31
:

LIST.LOCKS Display

The following table describes the column headings of the LIST.LOCKS

display.

Column Heading Description

UNO The sequential number UniData assigns to the UniData session.

UNBR Process group ID of the user setting the lock.

UID User ID of the user setting the lock.

UNAME Login name of the user setting the lock.

FILE NAME The name of the file in which the record is locked. For resource
locks, the word “semaphore” displays.

RECORD ID Record ID of the locked record. For resource locks, the resource
number displays.

M Record lock mode.

TIME The time at which the lock was set.

DATE The date on which the lock was set.

LIST.LOCKS Display
1-244 UniData Commands Reference

LIST.PAUSED

Syntax

LIST.PAUSED

Synonym

LIST-PAUSED

Description

The ECL LIST.PAUSED command lists all processes that have been paused

with the ECL PAUSE or UniBasic PAUSE command.

Example

The following example shows a typical LIST.PAUSED display. In the display,

a hyphen (-) indicates that no timeout period has been specified for the pause:

: LIST.PAUSED
Number of Paused Users
~~~~~~~~~~~~~~~~~~~~~~
5
UDTNO USRNBR UID USRNAME USRTYPE TTY LEFTTIME TOT_TIME
1 13656 1016 user1 udt pts/39 100 200
2 14430 1237 user2 udt pts/17 50 150
3 7484 1196 user3 udt pts/38 - -
   1-245



LIST.PAUSED Display

The following table describes the column headings that display in the output

for the LIST.PAUSED command.

Related Commands

UniData

LIST.PAUSED, PAUSE, WAKE

UniBasic Command

PAUSE, WAKE – For information, see the UniBasic Commands Reference.

Column Headings Description

UNO Sequential number UniData assigns to the UniData session.

UNBR Process group ID of the paused session.

UID User ID of the user whose session is paused.

USRNAME Login name of the user whose session is paused.

USRTYPE Type of session that is paused.

TTY Terminal device of the user whose session is paused.

LEFTTIME Number of seconds left until the process resumes.

TOT_TIME Total number of seconds the process is paused.

LIST.PAUSED Display
1-246 UniData Commands Reference



LIST.QUEUE

Syntax

LIST.QUEUE [USERNAME user_name | FILENAME filename |

user_number][DETAIL]

Synonym

LIST-QUEUE

Description

The ECL LIST.QUEUE command lists processes that currently waiting for

locks. If a process is waiting for a lock, LIST.QUEUE displays information

about the holder of the lock and processes waiting for the lock. Locks are set

by each udt process through the general lock manager (GLM) module.

UniBasic commands that check for locks, such as READU and READVU,

cause processes to wait for locks to be released before proceeding.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

USERNAME user_name Lists all locks the user is waiting for. user_name is the
operating system login name.

LIST.QUEUE Parameters
   1-247



Examples

The following example illustrates the output from the LIST.QUEUE

command when you do not specify any parameters.

: LIST.QUEUE
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6031 2 pts/2 11:05:44 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6130 4 ttyp1 11:05:54 Aug 04
INVENTORY 11060 X clair 6188 1 ttyp3 11:06:04 Aug 04

The next example illustrates the LIST.QUEUE output when you specify a

user name:

: LIST.QUEUE USERNAME root
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6031 2 pts/2 11:35:46 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X root 6259 5 ttyp2 11:35:56 Aug 04
:

FILENAME filename Lists all users waiting for locks for the file name you
specify.

user_number Lists all locks the user_number is waiting for. The
user number can be found in the UNBR column of
the LIST.READU and LIST.QUEUE output.

DETAIL Displays a detailed listing.

Parameter Description

LIST.QUEUE Parameters (continued)
1-248 UniData Commands Reference



The next example illustrates the LIST.QUEUE command output when you

specify a file name:

:LIST.QUEUE FILENAME INVENTORY
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X root 6259 5 ttyp2 11:38:16 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6188 1 ttyp3 11:38:36 Aug 04

INVENTORY 11060 X clair 6031 2 pts/2 11:38:46 Aug 04
:

The final example shows the output from the LIST.QUEUE command when

you specify a user number:

: LIST.QUEUE 6763
FILENAME RECORD_ID M OWNER UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6758 5 pts/3 14:16:26 Aug 04
------------------------------------------------------------------
--------
FILENAME RECORD_ID M WAITING UNBR UNO TTY TIME DATE
INVENTORY 11060 X clair 6763 6 ttyp1 14:16:46 Aug 04
:

LIST.QUEUE Display

The LIST.QUEUE display in the previous examples use the default display.

Information about the owner of the lock is listed above the line. Information

about processes waiting for the lock is listed below the line, sorted by the date

and time the process requested the lock.

The following table describes the column headings that display in the output

for the LIST.QUEUE command for the owner of the lock.

Column Heading Description

FILENAME The name of the file holding the lock.

RECORD_ID The record ID holding the lock.

M The type of lock held. X is an exclusive lock, S is a shared lock.

OWNER The user name of the owner of the lock.

LIST.QUEUE Owner Display
   1-249



The next table describes the LIST.QUEUE column headings for the processes

waiting for locks.

UNBR The process group ID (pid) of the user who set the lock.

UNO The sequential number UniData assigns to the udt process for the
owner of the lock.

TTY The Terminal device of the user owning the lock.

TIME The time the lock was set.

DATE The date the lock was set.

Column Heading Description

FILENAME The name of the file for which a lock is requested.

RECORD_ID The record ID of the record for which a lock is requested.

M The type of lock requested. X is an exclusive lock, S is a shared
lock.

WAITING The user name of the process waiting for a lock.

UNBR The process ID (pid) of the user waiting for a lock.

UNO The sequential number UniData assigns to the udt process
waiting for a lock.

TTY The terminal device of the user waiting for a lock.

TIME The time the lock was requested.

DATE The date the lock was requested.

LIST.QUEUE Waiting Display

Column Heading Description

LIST.QUEUE Owner Display (continued)
1-250 UniData Commands Reference



The following example illustrates the LIST.QUEUE display when you specify

the DETAIL option:

:LIST.QUEUE DETAIL
FILENAME RECORD_ID M INBR DNBR OWNER UNBR UNO TTY TIME DATE
INVENTORY 10060 X 241938 1073807361 clair 13798 3 pts/0 14:48:47
Nov 19
------------------------------------------------------------------
--------
FILENAME RECORD_ID M INBR DNBR WAITING UNBR UNO TTY TIME DATE
INVENTORY 10060 X 241938 1073807361 root 13763 1 ttyp2 14:48:57
Nov 19

The following table describes the column headings that display in the output

for the LIST.QUEUE command when you specify the DETAIL option.

Column Heading Description

FILENAME The name of the file for which a lock is held.

RECORD_ID The record ID of the record for which a lock is held.

M The type of lock held. X is an exclusive lock, S is a shared lock.

INBR The i-node of the file holding the lock.

DNBR Used in conjunction with the INBR to define the file holding the
lock at the operating system level.

OWNER The user name of the process holding the lock.

UNBR The process ID (pid) of the user holding a lock.

UNO The sequential number UniData assigns to the udt process
holding a lock.

TTY The terminal device of the user holding a lock.

TIME The time the lock was set.

DATE The date the lock was set.

LIST.QUEUE Detail Display
   1-251



The next table describes the column headings that display in the output for

the LIST.QUEUE command when you specify the DETAIL option for

processes waiting for locks.

Column Heading Description

FILENAME The name of the file for which a lock is requested.

RECORD_ID The record ID of the record for which a lock is requested.

M The type of lock held. X is an exclusive lock, S is a shared lock.

INBR The i-node of the file for which a lock is requested.

DNBR Used in conjunction with the INBR to define the file for which a
lock is requested at the operating system level.

WAITING The user name of the process requesting a lock.

UNBR The process ID (pid) of the user requesting a lock.

UNO The sequential number UniData assigns to the udt process
requesting a lock.

TTY The terminal device of the user requesting a lock.

TIME The time at which the lock was requested.

DATE The date on which the lock was requested.

LIST.QUEUE Detail Display
1-252 UniData Commands Reference



LIST.READU

Syntax

LIST.READU [user_number | ALL | FILENAME filename | USERNAME

user_name] [DETAIL]

Synonym

LIST-READU

Description

The ECL LIST.READU command displays a list of file and record locks. You

can display information about file and record locks by user number, user

name, or file name, or you can display all READU locks.

Note: Use the GETUSER command to retrieve your user number. Execute
LISTUSER to find out the user numbers for other users.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

user_number Displays all locks held by the user number you specify.

ALL Displays all currently active locks.

FILENAME filename Displays all active locks associated with the file name
you specify. If the file name does not reside in the
current account, nothing is displayed.

LIST.READU Parameters
   1-253



Examples

The following example illustrates the output from the LIST.READU

command when you do not specify any options:

: LIST.READU
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
4 6739 0 root ttyp5 INVENTOR 24193 10738 11000 X 16:22:13 Aug 04
5 6758 1172 clair pts/3 INVENTOR 24193 10738 10060 X 16:21:53 Aug 04
:

The next example illustrates the output from the LIST.READU command

when you specify a user number. The user number can be found in the output

from the LIST.QUEUE and LIST.READU commands under the UNBR

column.

: LIST.READU 6739
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE

4 6739 0 root ttyp5 INVENTOR 24193 10738 11000 X 16:25:44 Aug 04
:

The next example illustrates output from the LIST.READU command when

you specify a user name:

: LIST.READU USERNAME claireg
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
5 6758 1172 clair pts/3 INVENTOR 24193 10738 11060 X 16:28:14 Aug 04
:

The final example illustrates output from the LIST.READU command when

you specify a file name:

: LIST.READU FILENAME INVENTORY
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
4 6739 0 root ttyp5 INVENTOR 24193 10738 11000 X 16:28:24 Aug 04
5 6758 1172 clair pts/3 INVENTOR 24193 10738 11060 X 16:28:14 Aug 04
:

USERNAME user_name Displays all active locks associated with the user name
you specify.

DETAIL Displays detailed information.

-N Scrolls display of the list without pausing at the bottom
of each page.

Parameter Description

LIST.READU Parameters (continued)
1-254 UniData Commands Reference



LIST.READU Column Headings

The following table describes the column headings of the LIST.READU

display.

Column Heading Description

UNO The sequential number UniData assigns to the udt process that
set the lock.

UNBR The process ID of the user who set the lock.

UID The user ID of the user who set the lock.

UNAME The login name of the user who set the lock.

TTY The terminal device of the user who set the lock.

FILENAME The file name in which the record is locked.

INBR The i-node of the locked file.

DNBR Used in conjunction with INBR to define the file at the operating
system level.

RECORD_ID The record ID of the locked record.

M The type of lock. X indicates an exclusive lock. S indicates a
shared lock.

TIME The time at which the lock was set.

DATE The date on which the lock was set.

LIST.READU Column Headings
   1-255



LIST.TRIGGER

Syntax

LIST.TRIGGER [DATA | DICT] filename

Synonym

LIST-TRIGGER

Description

The ECL LIST.TRIGGER command displays a list of triggers.

For more information about triggers, see Developing UniBasic Applications.

Note: UniData triggers monitor the update or deletion of records in UniData files.
When a trigger is present and a user attempts to update or delete records in the file,
the trigger executes a user-defined, globally cataloged, UniBasic subroutine.

Parameters

The following tables describes each parameter of the syntax.

Parameter Description

filename A UniData file name.

DATA Lists triggers associated with the data file. This is the default
behavior.

DICT Lists triggers associated with the dictionary file.

LIST.TRIGGER Parameters
1-256 UniData Commands Reference



Example

The following example shows how UniData displays trigger information

with the LIST.TRIGGER command:

: LIST.TRIGGER ORDERS
BEFORE UPDATE TRIGGER: DEMO_RTN
BEFORE DELETE TRIGGER: not defined
:

Related Commands

CREATE.TRIGGER, DELETE.TRIGGER
   1-257



LIST.USERSTATS

Syntax

LIST.USERSTATS

Description

The LIST.USERSTATS command displays statistics of UniData activities. If

you have issued the ENABLE.USERSTATS command, UniData displays

statistics for your process only. If you have not issued the

ENABLE.USERSTATS command, UniData displays statistics collected for all

UniData processes since UniData was started.
1-258 UniData Commands Reference



Example

The following example illustrates the output from the LIST.USERSTATS

command:

: LIST.USERSTATS
File I/O Statistics
Physical File Opens........ 0
File Closes................ 0
Temp File Closes........... 0
Dynamic File Split......... 0
Dynamic File Merge......... 0
Record Reads............... 12
Record Writes.............. 0
Record Deletes............. 0
Level 1 Overflow........... 0
Level 2 Overflow........... 0
Program Control Statistics
Private Code Calls......... 0
Shared Code Calls.......... 0
Shared Code Failures....... 0
CALLC Calls................ 0
Chain Calls................ 0
Gosub Calls................ 0
Goto Calls................. 0
Execute Calls.............. 0
Pcperform Calls............ 0
Dynamic Array Statistics
DELETE..................... 0
FIND....................... 0
INSERT..................... 0
LOCATE..................... 0
MATPARSE................... 0
MATCHFIELD................. 0
COUNT...................... 0
EXTRACT.................... 0
FIELD...................... 0
REMOVE..................... 0
REPLACE.................... 0
INDEX...................... 0
Lock Statistics
Record Locks............... 0
Record Unlocks............. 0
Semaphore Locks............ 0
Semaphore Unlocks.......... 0
Shared Group Locks......... 24
Exclusive Group Locks...... 0
Shared Index Locks......... 0
Exclusive Index Locks...... 0
Lock Failures.............. 0
Index Statistics
Index Reads................ 0
Index Writes............... 0
   1-259



Log Reads.................. 0
Log Writes................. 0
Node Merges................ 0
Node Split................. 0
Node Reuse................. 0
Overflow Reads............. 0
Overflow Writes............ 0
:

1-260 UniData Commands Reference



LISTPEQS

Syntax

LISTPEQS

Synonym

SP-LISTQ

Description

The ECL LISTPEQS command lists the status of all requests made to the

system printer by the requesting process. This command operates like the

UNIX lpstat command. If the print queue for the process is empty, UniData

returns to the ECL prompt.

For more information about lpstat, see your UNIX system documentation.

Note: LISTPEQS is supported on UniData for UNIX only.
   1-261



LISTPTR

Syntax

LISTPTR

Description

The ECL LISTPTR command displays the printers defined for your system.

Examples

The following example displays printers defined for a UNIX system:

: LISTPTR
device for hpzone4: /dev/null
device for hpzone3: /dev/null
device for parallel: /dev/c1t0d0_l
:

The next example displays printers defined for a Windows platform:

: LISTPTR
Unit.. Printer...................
Port.......................Status..
0 \\DENVER4\hpzone3 hpzone3 Running
1 LEGAL \\DENVER4\hpzone4 Running
:

1-262 UniData Commands Reference



LISTUSER

Syntax

LISTUSER

listuser

Description

The ECL LISTUSER command and the system-level listuser command

display the number of users licensed for your installation and a list of the

UniData processes currently running.

In the event a UniData user session aborts through a power failure or other

abnormal circumstance, UniData registers the aborted process as an active

user, and it appears as such in the LISTUSER display. Eventually, the

cleanupd daemon will detect these processes and remove the aborted process

from the user list.

Note: Phantom processes do not count against the number of UniData licenses.

Tip: To remove aborted processes that register as active users, use the system-level
deleteuser command. For more information about deleteuser, see Administering
UniData.
   1-263



Example (UniData for UNIX)

The following example displays users for which UniData is licensed and

number currently active:

: LISTUSER
Max Number of Users UDT SQL TOTAL

~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
32 3 0 3
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 27398 1210 amyc udt 13:32:18 Jul 23 1999
4 27286 1172 claireg udt pts/1 09:45:04 Jul 23 1999
5 27319 1283 carolw udt pts/2 10:12:10 Jul 23 1999
:

LISTUSER Display

The following table describes the column headings in the LISTUSER display.

Parameter Description

UDTNO Sequential number UniData assigns to each user.

USRNBR System-level process ID (pid) assigned to a UniData session.

UID System-level ID assigned to a user.

USRNAME Login name of the user.

USRTYPE Type of process the user is running.

TTY Device ID.

TIME Time the user process started.

DATE Date the user process started.

LISTUSER Display
1-264 UniData Commands Reference

Example (UniData for Windows Platforms)

LISTUSER output on UniData for Windows Platforms is shown in the

following example:

: LISTUSER
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
16 4 0 4
UDTNO USRNBR UID USRNAME USRTYPE TTY IP-ADDRESS TIME DATE
1 131 1404 claireg udt pts/1 Console 14:34:02 Jul 22 1999
2 122 500 Administ udt pts/2 192.245.122.28 14:41:37 Jul 22 1999
3 98 1001 USER01 udt pts/3 192.245.122.28 15:24:17 Jul 22 1999
4 156 1404 claireg udt pts/4 Console 15:18:11 Jul 22 1999
5 154 500 Administ phantom pts/5 Console 15:30:43 Jul 22 1999
:

LISTUSER Display Attributes

The following table lists the LISTUSER command display attributes.

Parameter Description

UDTNO Sequential number UniData assigns to each user.

USRNBR Process ID of the UniData session.

UID Windows ID of the user.

USRNAME Login name of the user.

USRTYPE Type of process the user is running.

TTY Session identifier, formed by concatenating the string “pts/” and
the UDTNO.

IP-ADDRESS Location where the session is logged in; either “Console” or a
valid IP address.

TIME The time at which the user process started.

DATE The date on which the user process started.

LISTUSER Display Attributes
   1-265



Related Command

GETUSER
1-266 UniData Commands Reference



LO
LO is a synonym for the BYE command. For more information, see BYE.

Synonyms

BYE, QUIT
   1-267



LOCK

Syntax

LOCK resource [NO.WAIT]

Description

The ECL LOCK command reserves a resource for exclusive use by your

process.

If you do not use the NO.WAIT keyword, your process waits until the

resource has been released.

Note: A UniData resource lock behaves like a system-level semaphore lock.

To release a lock set by your process, execute CLEAR.LOCKS or
SUPERCLEAR.LOCKS. Resource locks are automatically released when the user
session ends.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

resource A number, from 0 to 63, inclusive, that identifies the resource to be
reserved. UniData can identify 64 resources.

NO.WAIT Your process returns to ECL if the resource is locked, without
waiting for the resource to become available.

LOCK Parameters
1-268 UniData Commands Reference



Example (UniData for UNIX)

In the following example, the LOCK command reserves resource 2. Then,

LIST.LOCKS lists the current system resource locks:

: LOCK 2
: LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
5 27319 1283carolw ts/2 semaphor -1 0 2 X 13:54:49 Jul 2:

Example (UniData for Windows Platforms)

In the following example, the LOCK command reserves resource 2. Then,

LIST.LOCKS lists the current system resource locks:

: LOCK 2
: LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME RECORD_ID M TIME DATE
1 251 1049668 claireg Console semaphore 1 X 19:14:44 Nov 03

Related Commands

CLEAR.LOCKS, LIST.LOCKS, SUPERCLEAR.LOCKS
   1-269



log_install

Syntax

log_install [-l | -a | -h]

Description

The system-level log_install command initializes the Recoverable File

Systems log files and archive files using information from the log

configuration table and the archive configuration table. When you use this

command, the UniData daemons must not be running. For more information

about this command and recoverable files, see Administering the Recoverable
File System.

To use this command, you must log in as root.

Tip: We recommend that you run cntl_install, which invokes log_install, rather than
executing log_install directly.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-l Default. Initializes log files only.

-a Initializes both archive files and log files. If you include this option
when the archiving system is not enabled, only the log configuration
table gets installed.

Tip: To enable archiving, set the ARCH_FLAG parameter in the
UniData configuration file to any positive integer.

-h Displays online help for log_install.

log_install Parameters
1-270 UniData Commands Reference



Example

The following example illustrates the log_install command with the -a

option:

# log_install -a
WARNING: log_install will replace your log files, if they exist,
without
making a backup copy. Do not run log_install unless you are
certain you
no longer need your earlier log files for recovery.
Do you want to continue? (Y/N) [n]
y
..........
#

Related Command

cntl_install
   1-271



LOGTO

Syntax

LOGTO account

Description

The ECL LOGTO command changes the current process to another account.

account must exist in the directory udthome on the home file system, or you

must provide the full path to account.The LOGOUT paragraph is not

executed when you log to another account.

Note: Ordinarily, whenever you change to an account, UniData executes the login
paragraph for that account unless you are logged in as root on UniData for UNIX or
as Administrator on UniData for Windows Platforms. Set UDT.OPTIONS 20 to on
to remove this exception. (With UDT.OPTIONS 20 on, UniData executes the login
paragraph when a root or Administrator user switches accounts.)

Tip: On UniData for UNIX, execute UNIX ln -s in udthome to create a symbolic
link. This enables you to distribute accounts over multiple file systems while still
using LOGTO.

Examples

In the following example, the user executes the LOGTO command to switch

to the UniData demo database account. The ECL WHERE command that

precedes and follows the example displays the current account. These

examples are taken from UniData for UNIX. On UniData for Windows

Platforms, the path contains the backslash.

: WHERE
/home/carolw/demo
: LOGTO demo
: WHERE
/users/ud60/demo
:

1-272 UniData Commands Reference



You can return to the original account with the LOGTO command, as shown

in the following example:

: WHERE
/disk1/ud60/demo
: LOGTO /home/carolw/demo
: WHERE
/home/carolw/demo
:

   1-273



LS

Syntax

LS [path]

Description

The ECL LS command displays the files that reside in the current account or

in path. path may be a DIR-type file or a file pointer (F-type).

Examples

The following example shows an LS command display for the current

account:

: LS
BP D_CLIENTS D_STATES INVENTORY _HOLD_
BP_SOURCE D_COURSES D_STUDENT MENUFILE _PH_
CATEGORIES D_CTLG D_TAPES ORDERS _REPORT_
CLIENTS D_CUSTOMER D_VOC PARAGRAPHS _SCREEN_
COURSES D_INVENTORY D__HOLD_ SAVEDLISTS __V__VIEW
CTLG D_MENUFILE D__PH_ STAFF savedlists
CUSTOMER D_ORDERS D__REPORT_ STATES vocupgrade
D_BP D_PARAGRAPHS D__SCREEN_ STUDENT
D_BP_SOURCE D_SAVEDLISTS D___V__VIEW TAPES
D_CATEGORIES D_STAFF D_savedlists VO
:

The next example shows output when LS is executed against a dynamic

hashed file in the UniData demo database. This file is in an overflow state,

and at least one index exists for this file:

: LS ORDERS
dat001

idx001
over001
1-274 UniData Commands Reference



Related Command

LSL
   1-275



LSL

Syntax

LSL

Description

The ECL LSL command displays a long listing of all of the files in a UniData

account.

On UniData for UNIX, the first line of this report is the total number of files

in the account. Subsequent lines list the files and subdirectories on the first

level of the account. On UniData for Windows Platforms, LSL executes the

MS-DOS dir command. LSL does not list files in subdirectories.

Example

The following example shows an LSL display on UniData for UNIX:

: LSL
total 570
drwxrwxrwx 2 root sys 24 Jul 11 16:17 BP
drwxrwxrwx 2 root sys 1024 Jul 17 10:06 BP_SOURCE
-rw-rw-rw- 1 root sys 4096 Jul 11 16:17 CATEGORIES
-rw-rw-rw- 1 root sys 21504 Jul 11 16:17 CLIENTS
-rw-rw-rw- 1 root sys 4096 Jul 11 16:17 COURSES
drwxrwxrwx 2 root sys 24 Jul 11 16:17 CTLG
-rw-rw-rw- 1 root sys 4096 Jul 11 16:17 CUSTOMER
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_BP
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_BP_SOURCE
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_CATEGORIES
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_CLIENTS
-rw-rw-rw- 1 root sys 2048 Jul 11 16:17 D_COURSES
...

Related Command

LS
1-276 UniData Commands Reference



lstt

Syntax

lstt [-l n |-Lpid]

Description

The system-level lstt command displays details about local control tables

(LCTs) in shared memory. See Administering UniData for more information

about shared memory and LCTs.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-l n Displays additional information about a designated local control
table identified by n, a local control table.

-L pid Displays additional information about a local control table identified
by a pid, (a system-level process identification number of a group
leader).

lstt Parameters
   1-277



Example

The following example shows general statistical information about all LCTs

on a system:

% lstt
----------------------- LCTs Statistics -----------------------
Total LCTs (Process Groups allowed): 40

LCTs Used (Active Process Groups): 5 (12% of 40) Total Ps: 10
Total Global Pages Used: 12 (1536K bytes)
Total Self-created.....: 0 (0K bytes)
Total memory used......: 1536K bytes
-------------------- End of LCTs Statistics -------------------
:

Related Commands

gstt, sms
1-278 UniData Commands Reference



MAG_RESTORE

Syntax

MAG_RESTORE [-D] [-E] [-G | GB] [-GC]

[-H[DYNAMIC0 | DYNAMIC1]]

[-O] [-S] [-U [0-9]] [-M [0-3]]

[-X char_list][-Kn][-A outputfile][-C filename][-B outputfile][-T directory]

[-R ALL | filelist] [-L [0-9]]

[acct_name]

Description

The system-level MAG_RESTORE command restores a PRIME® account

that was saved to tape with the PRIME MAGSAV command with REV19,

NO_ACL, on the same level as the User File Directory (UFD). For each

MAGSAV, only one logical volume may be included. MAG_RESTORE

restores accounts, with their original names, to the current directory. If

UniData cannot read a name from the tape, it uses acct_name.Ifacct_name is

the name of an account that does not exist in the current directory, UniData

executes the newacct command to create a new one. When multiple accounts

exist on a single save, UniData prompts for owner and group for each

account.

PRIME ® dynamic files are restored as UniData dynamic files. Hash type 0 is

assigned if -HDYNAMIC is not specified.

MAGSAV saves in variable-length blocks. UniData reads the tape as a single

block, or reads the first six blocks to determine block size.

Tip: If you have saved very large data files (larger than 1 gigabyte) from PRIME ® ,
we recommend that you create the target UniData files as dynamic before you begin
the restore. Assign a modulo to accommodate a file about 40 percent larger than the
original PRIME file. (When converting PRIME ® files larger than 1.5 gigabytes, the
UniData dynamic files created are approximately 40 percent larger.)

Note: Execute this command at the operating system prompt.
   1-279



Parameters

The following table lists the MAG_RESTORE parameters.

Parameter Description

-D Overwrites hashed files in an existing account with files from
tape, but does not create new files. Does not restore dictionary
files.

-E Clears each file on disk.

-GB MAGSAV writes data in variable-length blocks. However,
when a tape is copied with the UNIX dd command, data is
written onto the new tape in fixed-length blocks. -GB reads a
backup tape created in this way.

-GC Reads PRIME 2350 (60-mb cartridge) tapes. -GC is valid for
UniData releases after 2.2.2.

-HDYNAMIC0 Converts all restored files to dynamic with hash type 0.

-HDYNAMIC1 Converts all restored files to dynamic with hash type 1.

-O Overwrites all data in the account, including that in dictionary
and DIR-type files, from tape. The files must already exist in
the current directory.

Note: Execute MAG_RESTORE -C to create the files on disk
before executing MAG_RESTORE -O to populate them.

-S Truncates file names to 12 characters in length. This parameter
is not necessary if you run MAG_RESTORE on an operating
system that automatically shortens file and program names.

-U [0-9] Indicates a tape unit from which to read. The tape unit must be
described in the tapeinfo file in udthome/sys. Default is 0.
UniData reserves unit 9 for disk image.

Tip: Use the SETTAPE command first to set the tape unit.

-M [0-3] Converts data based on one of the following options:

■ 0 – Default. No conversion. Data is assumed to be ASCII.

■ 1 – EBCDIC conversion.

■ 2 – Invert high bit.

■ 3 – Swap bytes.

MAG_RESTORE Parameters
1-280 UniData Commands Reference



-X char_list char_list indicates characters to be considered invalid for:

■ file names

■ account names

■ record IDs in DIR-type files

■ While restoring, UniData converts these characters to under-

score (_). If the resulting name conflicts with an existing

account name, UniData adds a character to the end of the

name to make it unique. For example: A&B becomes A_B. If

A_B is used by another file, the name become A_Ba.

■ Default invalid characters are the following: space * ? / & ‘.

■ You cannot specify nonprinting characters as invalid.

Do not separate characters in char_list with spaces or commas.

-K n Defines the size of the internal memory buffer (in kilobytes).
Default size is 8000 K.

System restoration performs best when buffer size is large.
Change the size to match the capacity of your operating
system.

-A filename Creates filename, an ASCII text file, in the current directory,
containing statistics about each file on the tape. -A does not
restore files. See “Preparing for Restoration” following this
table.

-B outputfile Adjusts the modulo or block size for outputfile. The list should
contain a line entry for each file. To adjust these elements,
format the entries as in this example:

file1, 1, 203

file2, 4, 101

file3, 3, -1

file4, -1, 11

Note: “-1” tells MAG_RESTORE to keep the original modulo
or block size multiplier.

-C filename Reads the file created by a previous execution of
MAG_RESTORE with the -A filename option. Creates, in the
current directory, the files listed in filename, but does not restore
data.

Parameter Description

MAG_RESTORE Parameters (continued)
   1-281



Preparing for Restoration

We recommend that you the follow this procedure to make the restoration

more efficient. Use the -A parameter in conjunction with -C and -O to

determine file status before files are loaded. This decreases load time, because

UniData then does not have to resize files during restoration.

-T Separates the working directory and the target directory.
Optionally places the working directory on RAM-DISK to
improve system performance. RAM-DISK has a faster I/O
speed but less disk space. Optionally places the target
directory on another system through the Network File System
(NFS) to overcome disk shortage.

-R filelist | ALL Restores both data and dictionary portions of files listed in
filelist. You create filelist, an ASCII file containing a single-line
entry for each file to be ignored. The syntax for each line is as
follows:

PRIME_filename

Use the ALL keyword to load all of the files that are on the tape
but are not currently in the account.

-L [0-9] Adjusts the file pointer position. -L can restore the account to
any directory level. Each directory occupies 48 bytes.

Use the following numeric indicators to set the file pointer to
the correct directory in the path:

■ 0 – MAGSAV executed in the account’s own directory.

■ 1 – Default. MAGSAV executed at a directory level higher

than the account.

■ 2 - 9 – Supports nested accounts.

Tip: Before you use MAGSAV on PRIME® accounts that you
intend to restore with MAG_RESTORE, be certain the PRIME®
accounts are on the same directory level with the User File
Directory (UFD).

acct_name New name fro the restored account to be used if UniData
cannot obtain a name from the account on tape.

Parameter Description

MAG_RESTORE Parameters (continued)
1-282 UniData Commands Reference



1. 1. Execute MAG_RESTORE -A filename to generate a file containing

statistics about the files on tape. Use these statistics to evaluate the

suitability of the projected modulo, file type, and file separation.

filename is stored in the current directory. For each file, UniData lists

the following on a single line separated by commas:

■  The position of the file on the tape.

■  The type of UniData file.

■  The name of the UniData file.

■  The file separation.

■  The original modulo of the file on tape Informix recommends a

modulo based on the number of records and the size of the file. This

recommended modulo is never smaller than the original modulo.

■  The proposed key length.

■  The total record length for the file.

■  The number of records in the UniData file.

2. 2. Use an ASCII text editor to modify the file generated in Step 1 as

desired. For example, you might eliminate files from the list that you

do not want UniData to restore.

3. 3. Execute MAG_RESTORE -C filename to create new UniData files

in the destination directory. Remember, filename must be the name

of the file created in Step 1. Add other parameters as desired.

4. 4. Execute MAG_RESTORE -O filename to load the data and

dictionary records into the files created in Step 3. Add other

parameters as desired.

UniData may display any of the following messages during the restore.

Message Description

Create file modulo
separator [---newfile]

UniData is loading the file using the modulo and block
size multiplier found on the tape. If the file name contains
invalid characters or is too long, UniData changes its name
to “newfile.”

DUMP_MD UniData is reading an MD file.

DICT UniData is reading a dictionary file.

MAG_RESTORE Messages
   1-283



Files Created by MAG_RESTORE

MAG_RESTORE creates the following output files during the restore.

DATA UniData is reading a single-level hashed data file.

DIR UniData is reading a single-level sequential file.

LF UniData is reading a multi-level hashed data file.

LD UniData is reading a multi-level sequential file.

Loading (filename) ... UniData is loading the data into existing files rather than
creating files. This is the default when you run
MAG_RESTORE with the -D or -O option.

Replace to multi-level
success

A single-level file changed to a multi-level file.

Replace to multi-level
failure

UniData failed to change a single-level file into a multi-
level file.

Resize (filename) to
new modulo ---
(modulo)

The file called filename has an inadequate modulo;
UniData resized the file to a more efficient modulo
(modulo).

Create file failure UniData failed to create the file.

Open file failure UniData failed to open the file.

File Name Description

DUMP_VOC Hashed file. VOC in PRIME® systems and Pick® systems.

pgm_map Hashed file. Lists long file names changed to short file names.

MAG_RESTORE Output Files

Message Description

MAG_RESTORE Messages (continued)
1-284 UniData Commands Reference



dispmsg Text file. Saves screen display messages including error and dump
messages displayed at end-of-reel. UniData saves the first 70
characters displayed.

resize_list Text file. Lists the names of files that need to be resized.

idx_list Text file. Saves index information on the account.

File Name Description

MAG_RESTORE Output Files (continued)
   1-285



MAKE.MAP.FILE

Syntax

MAKE.MAP.FILE

Synonym

MAKE-MAP-FILE

Description

The ECL MAKE.MAP.FILE command rebuilds the _MAP_ file, which

contains information on globally cataloged UniBasic programs. _MAP_ is

located in udthome/sys on UniData for UNIX or udthome\sys on UniData for

Windows Platforms.

This command does the following:

■ Clears _MAP_

■ Executes SELECT CTLGTB (global catalog space) and, for each key

in the select list, verifies that the file still exists in

udthome/sys/CTLG/x on UniData for UNIX or

udthome\sys\CTLG\x on UniData for Windows Platforms. If it does,

UniData writes a record for it in the _MAP_ file.

Tip: Use the UniQuery LIST or ECL MAP command to view the contents of the
_MAP_ file.

Related Command

MAP
1-286 UniData Commands Reference



makeudapi

Syntax

makeudapi

Description

The system-level makeudapi command builds a new UniData executable

(udapi_slave) with links to C programs so that they are accessible through

InterCall, UniObjects, or UniObjects for Java.

Note: This command is supported on UniData for UNIX only.

The command reads the following files:

■  base.mk – This is a version of the make file, and is located in

udthome/work. UniData uses base.mk as a template for creating

new.mk, then executes new.mk to create the new udapi_slave

executable.

■ cfuncdef – This function definition file is also located in

udthome/work. It contains definitions for C functions that UniData

has incorporated into the current release of UniData. Do not modify

this file.

■ cfuncdef_user – This file contains definitions for site-specific C

functions that you want to link into InterCall, UniObjects, or

UniObjects for Java.

■  UniData Libraries – When you install UniData, you are prompted

for the path where you want to locate these.

Note: It is best to log in as root to execute makeudapi. UniData may be up and
running, and users may be logged in. However, if users are logged in, the makeudapi
command may not allow you to overwrite the production udapi_slave, depending on
your operating system. Some operating systems display an error message and exit,
while others prompt you to decide whether you want to overwrite the production
udapi_slave. If the production version is not overlaid, you must manually copy it.
   1-287



Related Command

makeudt
1-288 UniData Commands Reference



makeudt

Syntax

makeudt [-n nfa]

Description

The system-level makeudt command builds a new UniData executable (udt).

Note: This command is supported on UniData for UNIX only.

The command reads the following files:

■ base.mk – This is a version of the make file, and is located in

udthome/work. UniData uses base.mk as a template for creating

new.mk, then executes new.mk to create the new udt executable.

■ cfuncdef – This function definition file is also located in

udthome/work. It contains definitions for C functions that UniData

has incorporated into the current release of UniData. Do not modify

this file.

■ cfuncdef_user – This file contains definitions for site-specific C

functions that you want to link into UniData.

■ UniData Libraries –  When you install UniData, you are prompted

for the path where you want to locate these.

For detailed information about building a UniData executable, see

Administering UniData or Developing UniBasic Applications.

Note: It is best to log in as root to execute makeudt. UniData may be up and running,
and users may be logged in. However, if users are logged in, the makeudt command
may not allow you to overwrite the production udt, depending on your operating
system. Some operating systems display an error message and exit, while others
prompt you to decide whether you want to overwrite the production udt. If the
production version is not overlaid, you must manually copy it.
   1-289



Parameters

The following table describes the parameters of the syntax.

Parameter Description

-n nfa Use this option only if you are not using UniData OFS/NFA. This
option uses “dummy” libraries rather than network libraries
required by NFA. Software development environments may or may
not include the network libraries; if yours does not include these,
and you do not use the -n nfa option, makeudt fails.

makeudt Parameter
1-290 UniData Commands Reference



MAP

Syntax

MAP

Description

The ECL MAP command rebuilds the _MAP_ file and displays its contents

on the terminal screen. The _MAP_ file, located in udthome/sys on UniData

for UNIX or in udthome\sys on UniData for Windows Platforms, contains

information about globally cataloged UniBasic programs.

Tip: You can also use the UniQuery LIST command to view the contents of _MAP_,
for example, LIST _MAP_ ALL.

For more information on UniBasic programs, see Developing UniBasic
Applications.For more information on catalog space, see Administering
UniData.

Example

In the following example, UniData rebuilds and displays the contents of the

_MAP_ file to the terminal screen:

: MAP
MAP 09:15:33 Jun 23 1999 1
NAME............ TYPE ARG ORIGINATOR.......... WHO.... OBJ... DATE.... LAST
REF
508E S 41 @UDTHOME/SYS_BP 508E root 184 05/15/99 05/15/99
COUNT.MSG S 31 @UDTHOME/DENAT_BP CO root 582 05/15/99 05/15/99
UNT.MSG
SORT_AE S 11 @UDTHOME/AE_BP SORT_ root 1650 05/15/99 05/15/99

AE
7201 S 41 @UDTHOME/SYS_BP 7201 root 180 05/15/99 05/15/99
NFA.EXECSEL.U S 31 @UDTHOME/SYS_BP NFA. root 154 05/15/99 05/15/99
EXECSEL.U
S_VALID_FILE_CHE S 61 @UDTHOME/SYS_BP S_VA root 1712 05/15/99 05/15/99
CK LID_FILE_CHECK
.
.
.

   1-291



MAP Display

The following table describes the column headings that display in the output

for the MAP command.

Related Command

MAKE.MAP.FILE

Column Heading Description

NAME Name of the cataloged program.

TYPE Type of the cataloged program:

■ M – Main program

■ S – Subroutine

ARG Number of parameters in the call.

ORIGINATOR Full path to the file where the program was cataloged.

WHO Login name of the user who cataloged the program.

OBJ Size of the object code in bytes.

DATE Date the program was cataloged.

LAST REF Date the program was last accessed.

MAP Display
1-292 UniData Commands Reference



MAX.USER

Syntax

MAX.USER number

Synonym

MAX-USER

Description

The ECL MAX.USER command determines the maximum number of users

who can log into UniData. If MAX.USER is less than the number of users

currently logged in, UniData does not force current users to log out.

After stopping and starting UniData (stopud and startud), the number of

users is reestablished to the number licensed. To reset to this number without

stopping and restarting UniData, use MAX.USER with the correct number, or

-1.

If you set MAX.USER to 0 (zero) and exit UniData, you will have to restart

the daemons to start UniData again.

Note: To execute MAX.USER, you must log in as root on UniData for UNIX or as
Administrator on UniData for Windows Platforms.

Tip: Use MAX.USER for limiting the number of users on the system during system
maintenance.
   1-293



mediarec

Syntax

mediarec [-s [MM:DD:YY:]HH:MM[:SS]] [-e [MM:DD:YY:] HH:MM [:SS]]

[-f path/filename][-T start_LSN[,end_LSN]]

Description

The mediarec command restores changes to your recoverable files by

applying archives since the last backup.

Parameters

The following table describes the parameters for the syntax.

Parameter Description

[-s] Specifies the recovery start time. If you do not use the -s parameter,
the whole archive set (from the last backup to current) is recovered.

[-e] Specifies the recovery end time. If you do not use the -e parameter,
the whole archive set (from the last backup to current) is recovered.

[-f] Specifies a file that contains a list of files (one path and file name
per line) to recover. If you do not use the -f parameter, mediarec
recovers all file.s

[-T] Specifies the starting LSN and the ending LSN for media recovery.
If you only specify the starting LSN, mediarec will prompt for the
next sequential LSN.

mediarec Parameters
1-294 UniData Commands Reference



Example

In the following example, the mediarec command restores a database:

Screen Example
#mediarec
Using UDTBIN=/usr/ud60/bin
For media recovery, you would be required to have space for two
temporary files, one to hold the largest archive file and another
to hold the largest CP size. Please note the following info,
read documentation about media recovery procedure and re-start
media recovery.
Max CP Size (in bytes): 54272
Max Arch File Size (in bytes): 4218880
Also, if youre planning to use the tape(s) created by archive
process, please setup restore script
/usr/ud51/include/arch_restore properly
(tape device) and load the first archive tape.
Do you want to continue?(y/n)[n]
All output and error logs have been saved
to /usr/ud52/bin/saved_logs directory.
SMM is started.
Starting media recovery... Please wait.
For media recovery, youll be asked to upload
archive files one by one by sequence number into
the /usr/ARCH file.
de_arch: reading archive file on disk
The file TEST may have been deleted at OS level
If you choose to not re-create this file now,
the Media Recovery will be aborted to keep
the system transaction consistent.
Would you like it re-created? (y/n) [y]y
Deleting file D_TEST.
Deleting file TEST.
Create file D_TEST, modulo/1,blocksize/1024
Hash type = 0

Create dynamic file TEST, modulo/5,blocksize/1024
Hash type = 1
Added “@ID”, the default record for UniData to DICT TEST.
....
Please check /usr/ud60/FileInfo for un-recovered file level
operations.
*****!!! Media Recovery Finished!!!*****
SM stopped successfully.
SMM stopped successfully.
Media Recovery finished.
Please use /usr/ud60/bin/startud to start the system
   1-295



memresize

Syntax

memresize [DICT] filename [modulo [,block.size.multiplier]] [TMPPATH

pathname] [TYPE {0 | 1}] [MEMORY buf_size] [RESTORE] [STATIC |

[DYNAMIC] [KEYONLY |KEYDATA][PARTTBL part_tbl]] [NOPROMPT]

Description

The system-level memresize command resizes a hashed file in size, modulo,

block size, or hashing algorithm. memresize also converts between static and

dynamic hashed files and changes the split/merge type and the part table for

dynamic files. memresize operates in an internal memory buffer and writes

to disk only when the buffer becomes full or when the memresize operation

completes.

Parameters

The following table describes the parameters of the syntax.

Parameter Description

DICT Resizes the dictionary portion of filename.

filename The name of the file to be resized.

modulo The new modulo number to be assigned to the file.

block.size.multiplier An integer between 0 and 16 that UniData uses to
determine file size. See “Estimating the File Size” in the
CREATE.FILE command for more information about
sizing files.

memresize Parameters
1-296 UniData Commands Reference



TMPPATH pathname The path where UniData locates a working copy of the file
during resizing. The default is /tmp on UniData for UNIX
or \TEMP on UniData for Windows Platforms. This
parameter has no effect if the resulting file is a dynamic
file.

TYPE {0 | 1} Hash type for the resized file.

MEMORY buf_size Size in kilobytes of memory buffer used for the operation.
memresize may perform faster with a larger memory
allocation. The minimum size is 256K. The default on most
systems is 8000K (8 MB). You can assign as much memory
as is available on your system. For example, 12000000
assigns 12 MB of memory to the memresize command.

RESTORE Skip over file corruption that cannot be fixed, but continue
resizing the file. Use this parameter when a file must be
restored regardless of corruption.

STATIC After resizing, the file is a static hashed file.

DYNAMIC After resizing, the file is a dynamic hashed file.

KEYDATA After resizing, the file is dynamic and the split/merge
type is KEYDATA.

KEYONLY After resizing the file is dynamic and the split/merge type
is KEYONLY (the default).

PARTTBL,part_tbl After resizing, file is a dynamic file. part_tbl is the path and
file name of a previously established part table. memresize
copies part_tbl into the dynamic file directory. The copy of
part_tbl in the dynamic file directory serves as the “per-
file” part table for the dynamic file.

Note: This option is supported on UniData for UNIX only.

NOPROMPT If you specify this parameter, memresize does not prompt
you to free disk space if it encounters a file system full.
memresize removes the temporary file that was under
construction and quits, leaving the original, live file
untouched. UniData displays messages to the screen.

Parameter Description

memresize Parameters (continued)
   1-297



Additional Information

Notice the following points about memresize options:

■ Specifying DYNAMIC, KEYONLY, KEYDATA, or PARTTBL on the

command line causes the resized file to be dynamic.

■ The DICT option is invalid if combined with any of the DYNAMIC

options.

■ You cannot convert UniData system files (for instance, a VOC file or

the ERRMSG file) into a dynamic file. memresize reports an error and

fails.

■  The TMPPATH option is invalid if any DYNAMIC options are

specified (or if the starting file is dynamic and no file type options are

specified).

■ If the starting file is recoverable, the resized file is recoverable. If the

starting file is nonrecoverable, the resized file is nonrecoverable.

■  If the starting file has an index, memresize uses the following logic

to handle index related files:

■  If both the starting file and the resulting file are STATIC, leave

the index file and index log file unchanged.

■ If the starting file is STATIC and the resulting file is DYNAMIC,

copy the index file to idx001 and the index log file (if it exists) to

xlog001 in the dynamic file directory.

■ If the starting file is DYNAMIC, and the resulting file is STATIC,

and the starting file has only one index part file (idx001) and no

more than one index log file (xlog001), copy idx001 to X_filename
and xlog001 (if it exists) to x_filename on UniData for UNIX or

L_filename on UniData for Windows Platforms in the account

directory.

■ If the starting file is DYNAMIC and the resulting file is STATIC,

and the starting file has more than one index part file, do not

process the index or index log files. Display a message directing

the user to re-create and rebuild the indexes.

■  If both the starting file and the resulting file are DYNAMIC,

simply copy the index file or files and the index log file (if there

is one) to the new dynamic file resident directory.
1-298 UniData Commands Reference



Default Rules

The following table lists the default rules for memresize. Refer to this table to

determine settings for any memresize options that are not explicitly set on the

command line.

Parameter Default

block.size.multiplier Same as starting file.

DICT Specifies the dictionary portion of the file. If not
specified, memresize the data portion of filename.

modulo Same as the current modulo of the starting file.

PARTTBL Not applicable if starting file or resulting file is
STATIC. If starting file and resulting file are dynamic,
use the starting file’s per-file part table if there is one.
If the starting file does not have a per-file part table,
use the system default part table (current setting of
PART_TBL configuration parameter or environment
variable).

Note: This option is supported on UniData for UNIX
only.

STATIC | DYNAMIC Same as the starting file.

KEYONLY | KEYDATA Same as the starting file.

TMPPATH On UniData for UNIX, /tmp by default. On UniData
for Windows Platforms, \TEMP by default. You can
specify another path for memresize to use as work
space.

TYPE {0 | 1} Same as the starting file.

memresize Parameters:Default Rules
   1-299



Examples

The following examples were generated on UniData for UNIX in the order in

which they appear by using a copy of the INVENTORY file from the UniData

demo database. In the following example, FILE.STAT displays information

before resizing:

: FILE.STAT INVENTORY
File name (Recoverable Dynamic File) = INVENTORY
Number of groups in file (modulo) = 19
Dynamic hashing, hash type = 0
Split/Merge type = KEYONLY
Block size = 1024
File has 2 groups in level one overflow.
Number of records = 175
Total number of bytes = 13505
...

In the next example, memresize converts the file to a static file, with a new

modulo.

: !memresize INVENTORY 23 STATIC
Resize INVENTORY mod(,sep) = 23(,-1) type = -1 memory = 8000 (k)
static
175 record(s) in file.
INVENTORY RESIZED from 19 to 23
Total time used =2 (sec)
:FILE.STAT INVENTORY
File name (Recoverable Static File) = INVENTORY
Number of groups in file (modulo) = 23
Static hashing, hash type = 0
Block size = 1024
File has 1 groups in level one overflow.
Number of records = 175
Total number of bytes = 13505
...

Notice that parameters that were not specified (for instance,

block.size.multiplier,MEMORY,and TYPE) were not changed. Some of these

parameters appear as -1 in the memresize output, indicating they are not

changed.

In the next example, memresize converts the file to a KEYDATA dynamic file

with a per-file part table on UniData for UNIX.

:!memresize INVENTORY MEMORY 12000 KEYDATA PARTTBL

/home/terric/parttbl
1-300 UniData Commands Reference



Resize INVENTORY mod(,sep) = 0(,-1) type = -1 memory = 12000 (k)

dynamic

KEYDATA PARTTBL=/home/terric/parttbl
RESIZE file INVENTORY to 23.
175 record(s) in file.
INVENTORY RESIZED from 23 to 23
Total time used =1 (sec)
:FILE.STAT INVENTORY
File name (Recoverable Dynamic File) = INVENTORY
Number of groups in file (modulo) = 23
Dynamic hashing, hash type = 0
Split/Merge type = KEYDATA
Block size = 1024
File has 2 groups in level one overflow.
Number of records = 175
Total number of bytes = 13505
...
:!ls -l INVENTORY
total 6
lrwxrwxrwx 1 terric unisrc 41 Jun 16 15:06 dat001 -> /usr/uni-data/
partfiles/ABINVENTORY/dat001
lrwxrwxrwx 1 terric unisrc 42 Jun 16 15:06 over001 -> /usr/uni-data/
partfiles/ABINVENTORY/over001
-rw-rw-rw- 1 terric unisrc 72 Jun 16 15:06 parttbl

Notice that after memresize is executed, INVENTORY is a dynamic file even

though the DYNAMIC keyword was not specified. Because KEYDATA and

PARTTBL are applicable only to dynamic files, using these keywords

produces a dynamic file. The dynamic file directory contains links to dat001

and over001 and the per-file part table (parttbl).

Note: The per-file part table is a valid option on UniData for UNIX only.

Related Command

RESIZE
   1-301



MENUS

Syntax

MENUS

Description

The ECL MENUS command invokes the MENUS utility, through which you

can modify, display, and print VOC records.

For more information about using the UniData MENUS utility, see Using
UniData.

Example

When you execute the MENUS command, UniData displays the main menu:

: MENUS
MENU Maintenance 15:10:53 Jul 31 1999
1= Enter/Modify a MENU
2= Enter/Modify a formatted MENU
3= Display a summary of all MENUs on a MENU file
4= Display the contents of a MENU
5= Enter/Modify a VOC MENU selector
6= Enter/Modify a VOC stored sentence item
7= Display all MENU selector item on the VOC file
8= Display all stored sentence items on the VOC file
9= Display the dictionary of a file
10= Print a summary of all MENUs on a MENU file
11= Print the contentes of a MENU
12= Print the dictionary of a file
13= Enter/Modify a VOC stored paragraph item
which would you like? (1 - 13)=
1-302 UniData Commands Reference



MESSAGE

Syntax

UniData for UNIX

MESSAGE [!port][user][*]string

UniData for Windows Platforms

MESSAGE [user][!tty][*]string

Description (UniData for UNIX)

The ECL MESSAGE command sends text to one or more user terminals.

You must have write permission on the target terminal to send a message to

that device.

You can use the UNIX mesg command to set permissions that control access

to your terminal. Add this command to your .login or .profile file to set this

for each work session. See your operating system documentation for more

instructions on the mesg command and setting permissions.

Note: Use the WHO command to determine user login names and port numbers.
   1-303



Parameters

The following table describes each parameter of the syntax.

Examples

In the following example, sends a message to all users:

: MESSAGE * The system will shut down in three minutes.

The preceding message displays as follows on all user terminals:

From carolw /dev/pts/6 : The system will shut down in three
minutes.

Description (UniData for Windows Platforms)

The ECL MESSAGE command directs UniData to send text to a designated

user, to a designated session, or to all users.

Note: On UniData for Windows Platforms, UDT.OPTIONS 90
(U_MESSAGE_RAW) enables users to suppress the display of sender information
in MESSAGE output.

Parameter Description

!port The terminal assigned to a user on the same computer.

Tip: Execute any of the following to get !port (login name):

■ MYSELF

■ !who am i

■ !tty

■ LISTUSER

user The ID (login name) of the user to receive the message.

* Directs the message to all user terminals.

string The message to be sent.

MESSAGE Parameters
1-304 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Examples

The following example shows MESSAGE output with and without

UDT.OPTIONS 90 turned on. For the example, sender and receiver are the

same process:

: UDT.OPTIONS 90 OFF
: MESSAGE USER01 “Accounts Payable update is complete.”
From USER01 127.0.0.1: “Accounts Payable update is complete.”
: UDT.OPTIONS 90 ON
: MESSAGE USER01 “Accounts Payable update is complete.”
“Accounts Payable update is complete.”
:

Notice that only the message string itself displays if UDT.OPTIONS 90 is on.

Parameter Description

user The login name of the user who is to receive the message.

!tty Sends a message to the terminal whose “tty” you specify.

Note: Displays the tty with the ECL LISTUSER command.

* Sends a message to all users.

string The message to be sent to users.

Message Parameters
   1-305



The next two examples illustrate the !tty option. The following example

records a session where two messages were sent, one with and one without

UDT.OPTIONS 90:

: LISTUSER
Max Number of Users UDT SQL TOTAL
~~~~~~~~~~~~~~~~~~~ ~~~ ~~~ ~~~~~
16 3 0 3
UDTNO USRNBR UID USRNAME USRTYPE TTY IP-ADDRESS TIME DATE
1 68 1404 claire udt pts/1 Console 15:35:41 Jul 21 1999
2 140 1001 USER01 udt pts/2 192.245.122.28 17:21:19 Jul 21 1999
3 132 500 Administ udt pts/3 192.245.122.28 17:22:05 Jul 21 1999
: myself
Administrator pts/3 17:22:05 Jul 21 1998 (192.245.122.28)
: MESSAGE !pts/2 “The General Ledger update is complete.”
: UDT.OPTIONS 90 ON
: MESSAGE !pts/2 “The meeting was canceled.”
:

The following message records a session at the terminal where the two

messages were received:

: MYSELF
USER01 pts/2 17:21:19 Jul 21 1999 (192.245.122.28)
: From Administrator 192.245.122.28: “The General Ledger update is
complete.”
“The meeting was canceled.”
:

1-306 UniData Commands Reference

MIN.MEMORY

Syntax

MIN.MEMORY TEMP n

Synonym

MIN-MEMORY TEMP

Description

The ECL MIN.MEMORY TEMP command overrides the UniData

configuration parameter MIN_MEMORY_TEMP, which defines the number

of local pages reserved in memory for a UniData session. The default

configuration parameter setting is 64.

Example

The following example sets MIN_MEMORY_TEMP to 128:

: MIN.MEMORY TEMP 128
 1-307

mvpart

Syntax

mvpart filename/part_name destination

Description

The system-level mvpart command moves one or more part files of a

dynamic file. mvpart sets or resets symbolic links if needed and creates or

updates a prefix table (.fil_prefix_tbl) at the destination location if needed.

Using mvpart ensures that the links, file locations, and prefix tables remain

synchronized.

Note: mvpart is supported on UniData for UNIX only.

mvpart is an offline tool. If you execute mvpart while the UniData daemons are
running, an error message displays and the command fails.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename UNIX path and file name of the dynamic file directory. Cannot be
a synonym or SETFILE pointer.

part_name Name of the part file you wish to move (for instance, dat00x,
over00x, idx00x).

destination Location to place the part file being moved. Must be either “.” or a
fully qualified UNIX path. Must be an entry in the part table for
filename. Use “.” to move a part file back to its original dynamic file
directory.

mvpart Parameters
1-308 UniData Commands Reference

Examples

The following examples were generated from a copy of the INVENTORY file

from the UniData demo account. The first example shows how the file was

created and populated:

: CREATE.FILE PRODUCTS 19 DYNAMIC PARTTBL /home/terric/parttbl
Create file D_PRODUCTS, modulo/1,blocksize/1024
Hash type = 0
Create dynamic file PRODUCTS, modulo/19,blocksize/1024
Hash type = 0
Split/Merge type = KEYONLY
Added “@ID”, the default record for UniData to DICT PRODUCTS.
: COPY FROM DICT INVENTORY TO DICT PRODUCTS ALL
@ID exists in PRODUCTS, cannot overwrite
15 records copied
: COPY FROM INVENTORY TO PRODUCTS ALL
175 records copied
: !ls -l PRODUCTS
total 6
lrwxrwxrwx 1 terric unisrc 32 Jun 3 09:35 dat001 -> /tmp/part-files/
ACPRODUCTS/dat001
lrwxrwxrwx 1 terric unisrc 33 Jun 3 09:35 over001 -> /tmp/part-files/
ACPRODUCTS/over001
-rw-rw-rw- 1 terric unisrc 35 Jun 3 09:35 parttbl

Notice that the per-file part table (parttbl) is in the dynamic file directory.The

dat001 and over001 are physically located on a different file system. The

location of dat001 and over001 is determined by the part table, shown in the

next example:

: !more ./PRODUCTS/parttbl
. 10000000
/tmp/partfiles 10000

The following example shows how to move the dat001 back to the dynamic

file directory. Notice that it is not necessary to set your current working

directory to the UniData account:

pwd
/usr/ud60
$UDTBIN/mvpart $UDTHOME/demo/PRODUCTS/dat001 .
ls -l $UDTHOME/demo/PRODUCTS
total 44
-rw-rw-rw- 1 root sys 20480 Jun 3 09:46 dat001
lrwxrwxrwx 1 claireg unisrc 33 Jun 3 09:35 over001 -> /tmp/part-
files/
ACPRODUCTS/over001
-rw-rw-rw- 1 claireg unisrc 35 Jun 3 09:35 parttbl

Notice these points about the preceding example:
 1-309

■ You must be logged in as root to execute mvpart.

■ You can execute mvpart from any directory as long as you specify

the full path and file name for the dynamic file directory. If it is

located in your current directory, you can specify its relative path.

■ When you specify . in the command line, the part file is moved to its

original dynamic file directory, not to your current directory.

The following example shows what happens if a user executes the mvpart

command while the UniData daemons are running:

: !mvpart
mvpart has detected that the UniData daemons are running.
The system administrator must stop the daemons (with stopud)
before mvpart can execute.

Warning: If you want to relocate part files, shut down UniData and use mvpart. Do
not use the UNIX cp or mv command, or your file may be damaged and UniData may
crash. Also, the cp and mv commands do not update symbolic links or the
.fil_prefix_tbl.
1-310 UniData Commands Reference

MYSELF

Syntax

MYSELF

Description

The ECL MYSELF command displays the following session information for

the user logged in to the terminal where the command is executed:

■ The login name.

■ On UniData for UNIX, the terminal identification number (tty).

■ On UniData for Windows Platforms, the tty number is a session

identifier constructed by appending the udtno (displayed in the

output from LISTUSER) to the string pts/.

■ The date and time the user logged on to UniData.

■ On UniData for Windows Platforms, the terminal identification

(Console or IP address).

Example

The following example shows a MYSELF command display on UniData for

UNIX:

: MYSELF
carolw pts/6 Jul 31 10:41
:

 1-311

newacct

Syntax

newacct [account.owner][group]

Description

The system-level newacct command creates a UniData account in the current

directory.

If you do not specify an account owner or group, newacct lists the available

owners and groups and prompts for them. A maximum of 4096 login names

are displayed. You can limit the login names or groups by specifying account

owner and group in the command line.

For more information about creating new UniData accounts, see

Administering UniData.

Note: Unless you log in as root on UniData for UNIX or Administrator on UniData
for Windows Platforms, UniData uses your current login and group ID and ignores
your responses to the prompt.
1-312 UniData Commands Reference

Example

The following example creates a new UniData account:

$UDTBIN/newacct
The UDTHOME for this account is /disk1/ud52/.
Do you want to continue(y/n)? y
Current directory is ‘/home/carolw’
......................... List of Users
abuls croweb jeffa linq pamm spooler ukm01
adm daemon jeffreyk lisac pasche srcman uks01
...

carolw
...
Please enter account owners login name: carolw
......................... List of Groups
acctg consulting lp nuucp root tty
adm daemon lp other sbusers ukusers
adm daemon mail other sys unisrc
bin dw mail remusers sys users
bin guests nogroup root techserv users
Please enter the account group name: users
Initializing the account ...
#

 1-313

newhome

Syntax

newhome path

Description

The system-level newhome command creates an alternate global catalog

space for globally cataloged UniBasic programs.

newhome creates or overlays the directory indicated by path, and then copies

all files from udtbin/sys to path/sys on UniData for UNIX or to udtbin\sys to

path\sys on UniData for Windows Platforms. After setting up the new home

account, you must reset the environment variable udthome to point to the

new home account. Also, you must recatalog UniBasic programs or copy

their object code to the new catalog space to make them available to the new

account.

newhome does not create the entire directory structure that exists in the

default udthome, and it does not copy UniBasic executables developed at

your site.

Note: To execute the newhome command, you must be root on UniData for

UNIX or Administrator on UniData for Windows Platforms.

See Administering UniData for more information on creating an alternate

global space and for managing cataloged UniBasic programs.
1-314 UniData Commands Reference

Files and Directories Created by newhome

UniData creates or overlays the directory indicated by path. This directory

will contain only the subdirectory sys, which contains the following files and

directories:

ls
@README CTLGTB D_HELP.FILE LANGGRP

@README-IMPORTANT DENAT_BP D_JAPANESE.MSG MULTIBYTE.CONFI
@VERSIONS DICT.DICT D_MSG.DEFAULTS SAVEDLISTS
AE_BP D_AE_BP D_SAVEDLISTS SYS_BP
AE_COMS D_AE_COMS D_SYS_BP UDTSPOOL.CONFIG
AE_COMS_DEMO D_AE_DOC D_UDT_GUIDE VOC
AE_DOC D_BP D_VOC X_HELP.FILE
AE_SECURITY D_COLLATIONS D__MAP_ _MAP_
AE_SYSTOOLS D_CTLG D__PH_ _PH_
AE_UPCHARS D_CTLGTB ENGLISH.MSG makefile
AE_XCOMS D_DENAT_BP ENGLISH_G2.MSG set_sys.sh
BP D_ENGLISH.MSG FRENCH.MSG uniapi.msg
COLLATIONS D_ENGLISH_G2.MSG HELP.FILE vocupgrade
CTLG D_FRENCH.MSG JAPANESE.MSG

The following files and directories make up the program catalog spaces:

■ D_CTLGTB

■ CTLGTB

■ D_CTLG

■ CTLG, including subdirectories a through z and X for storing

globally cataloged programs.

Creating an Alternate Catalog Space on UniData for Windows
Platforms

Complete the following steps to create an alternate global catalog space on

UniData for Windows Platforms:

1. Log on to Your System

Log in to your system as an Administrator.
 1-315

2. Create the Folder

Use the MS-DOS mkdir command to create the folder (or create it

through NT Explorer or My Computer). Then use the Security tab on

the folders Properties sheet to give Administrators Full Control

permissions to Administrators.

3. Set UDTHOME Environment Variable

To execute the newhome command, you must set the environment

variable UDTHOME to point to the directory you just created. The

following example shows how to create the directory and set

UDTHOME from the MS-DOS command prompts.

Note: Do not change the value of UDTHOME for any other users until you
have completed all the steps for the new alternate global catalog space.
1-316 UniData Commands Reference

4. Execute newhome

The system-level newhome command copies relevant files from the

default udthome into the directory you specified with the

UDTHOME environment variable.

The following screen illustrates typical output from the newhome

command:

Answering Y at the prompt causes the command to complete, as

shown in the following example:
 1-317

The next screens show the results of the newhome command. The

first screen shows the udthome directory. Notice that the command

has created and populated the sys and include directories.

The next screen shows the contents of the new sys directory:

Notice that the newhome command created and populated two

subdirectories: sys and include. newhome does not create the entire

directory structure that exists in the default udthome.

The newhome command also copies all globally cataloged programs

released with UniData into the alternate global catalog. newhome

does not copy UniBasic programs that you developed at your site.

The following example compares some contents of a newly created

alternate global catalog and the default global catalog for your

system:
1-318 UniData Commands Reference

Notice that the alternate global catalog does not include the

TESTPROG program.
 1-319

5. Activate the Alternate Global Catalog

Complete the following steps to begin using the alternate global

NScatalog space. Remember that the value for the UDTHOME

NSenvironment variable determines which global catalog space a

user accesses when cataloging a program or executing a globally

cataloged program. The VOC pointer for CTLGTB determines which

global catalog table the user accesses.

■ Modify VOC Pointer – Decide which UniData accounts should

access the new global catalog space. For each such account,

modify the VOC entry for the global catalog table to point to the

new location. Users can still compile and catalog if this VOC

pointer and the UDTHOME environment variable are not

consistent, but they may encounter puzzling results, since

CTLGTB and CTLG will not necessarily match.

You can make the VOC entry a soft pointer, so that the current setting

for the UDTHOME environment variable determines the location of

both the global catalog and the global catalog table. The following

screen shows an example of a soft VOC pointer:

■ Modify UDTHOME Environment Variable for Users – You need

to reset the UDTHOME environment variable for each user who

should access the alternate global catalog space. The value of

UDTHOME this is defined during a particular UniData session

determines which global catalog space a user accesses. Users

with access to the Control Panel or the MS-DOS prompt can reset

UDTHOME.

■ Move Application Programs Into the New Space – Enter

UniData in an account where your application programs reside,
1-320 UniData Commands Reference

and globally catalog all the programs that should be accessed

from the new space. Since you have reset UDTHOME,

cataloging the programs globally locates them in the new catalog

space.

Creating an Alternate Catalog Space on UniData for UNIX

Follow the steps below to create an alternate global catalog space:

1. Make New Directory

At the system prompt, create the directory for the new global catalog

space, then change to the new directory, as shown in the following

example:

% mkdir claireg
% cd claireg
% pwd
/disk1/claireg

2. Execute newhome

Execute the newhome command, indicating the path to the location

for the new account. In this case, a new UNIX directory, testenv, will

be created under /disk1/claireg:

% newhome testenv
Creating new UniData home /disk1/claireg/testenv ...

UniData has created the new home account. This account contains

only the sys directory with UniData’s cataloged programs. To access

your new home account, you must reset the UDTHOME

environment variable.

3. Set UDTHOME Environment Variable

To access the new home account, reset the UDTHOME environment

variable.

From the Bourne or Korn shell:

UDTHOME=/disk1/claireg/testenv;export UDTHOME

From the C shell:

% setenv UDTHOME /disk1/claireg/testenv
 1-321

4. Make UniBasic Programs Available

Make available to the new account any globally cataloged UniBasic

programs. You can do this by setting a VOC pointer to the old catalog

space, or by copying the cataloged programs into the new account:

■ VOC pointer – You can associate CTLGTB with udthome by

setting up a VOC pointer in each account. The pointer looks like

this:

F

@UDTHOME/sys/CTLGTB

@UDTHOME/sys/D_CTLGTB/

■ Copy object code records – To copy all globally cataloged

programs, enter the following series of UNIX commands,

replacing original_udthome and new_udthome with the paths to

your program files:

%cd original_udthome/sys/CTLG
find * -type f -print | cpio -pm new_udthome/sys/CTLG
1-322 UniData Commands Reference

NEWPCODE

Syntax

NEWPCODE path

Description

The ECL NEWPCODE (new pseudo-code) command activates the latest

version of a program. path is the full path to the new object code for the

program. The NEWPCODE command is effective only in the udt session

from which it is executed.

If a UniBasic program CALLs or EXECUTEs another program or subroutine,

UniData executes the version that was cataloged when the calling program

began executing unless you do one of the following:

■ Stop and restart the executing program.

■ Execute NEWPCODE to activate another version

You do not need to execute NEWPCODE if you globally catalog a program

because global cataloging notifies the shared memory server that a new

version is available. However, if you catalog the program locally or directly,

you do need to execute NEWPCODE to remove the object code from local

memory.

Tip: Use NEWPCODE in a UniBasic program to modify, recompile, recatalog, and
retest it without exiting to ECL. An example is provided in the following section.

For more information about writing programs in UniBasic, see Developing
UniBasic Applications.
 1-323

Example

In the following UniBasic program, notice that, until NEWPCODE is

executed, UniData executes the version of the program in shared memory.

The line that contains the NEWPCODE command is shown in bold.

EXECUTE “DELETE.CATALOG test”; * START CLEAN
OPEN ‘BP’ TO BP ELSE STOP
* create simple BASIC program to print HELLO
REC = ‘PRINT “HELLO”’
WRITE REC ON BP, “test”
*compile, catalog, and run the program
EXECUTE “BASIC BP test”
EXECUTE “CATALOG BP test”
EXECUTE “test”
*Change TEST program to print HELLO THERE, recompile and run
again.
BPREC = ‘PRINT “HELLO THERE”’
WRITE BPREC ON BP, “test”
EXECUTE “BASIC BP test”
PCPERFORM “cp BP/_testc /disk1/ud60/sys/CTLG/t/testc”
* instead of using
*EXECUTE “CATALOG BP test FORCE”
EXECUTE “testc”
* HELLO is still printed on the screen.
* Note: /usr/ud is the path to the UniData home directory.
EXECUTE “NEWPCODE /disk1/ud60/sys/CTLG/t/testc”
EXECUTE “testc”
* HELLO THERE is printed on the screen
END

The preceding program displays the following output:

: BASIC BP TEST_NEWP
Compiling Unibasic: BP/testc in mode ‘u’.
compilation finished
HELLO
Compiling Unibasic: BP/testc in mode ‘u’.
compilation finished

HELLO
HELLO THERE

Related Command

newversion
1-324 UniData Commands Reference

newversion

Syntax

newversion path_program user[,userM...,userN]

Description

The system-level newversion command replaces the UniBasic executable in

shared memory with a newly cataloged version. Programs and subroutines

are replaced only when the calling and called programs are in use.

newversion differs from NEWPCODE in that newversion requires that you

specify a user or users to obtain the new version, and all other users obtain

the previous version. NEWPCODE, on the other hand, changes the version

of a program in shared memory for all users.

Use this command at the system prompt, or use the ECL ! (bang) command

to execute it from the ECL (colon) prompt.
 1-325

You can define the users who have permission to execute the newversion

command by modifying the udtconfig file. To define the users, create an entry

in udtconfig for NEWVERSION_USERS, followed by the user numbers

allowed to execute newversion. Separate each user number with a comma. If

you want all users to be able to execute newversion, set the user number to

ALL, as shown in the following example:

cd /usr/ud60/include
vi udtconfig
“udtconfig” 140 lines, 2486 characters
Unidata Configuration Parameters
#
Section 1 Neutral parameters
These parameters are required by all Unidata installations.
1.1 System dependent parameters, they should not be changed.
LOCKFIFO=1
SYS_PV=3

1.2 Changable parameters
NFILES=60
NUSERS=20
WRITE_TO_CONSOLE=0
TMP=/tmp/
NVLMARK=
FCNTL_ON=0
TOGGLE_NAP_TIME=161
NULL_FLAG=0
N_FILESYS=200
N_GLM_GLOBAL_BUCKET=101
N_GLM_SELF_BUCKET=23
GLM_MEM_ALLOC=10
GLM_MEM_SEGSZ=4194304
NEWVERSION_USERS=ALL
.
.
.

If you do not modify the udtconfig file, you must log in as root on UniData

for UNIX or as Administrator on UniData for Windows Platforms to execute

the newversion command.

For more information about cataloging UniBasic programs, see the

CATALOG command or Administering UniData.

Tip: Use the LISTUSER command to obtain a list of process IDs (USRNBR).
1-326 UniData Commands Reference

Parameters

The following table describes each parameter of the syntax.

Related Commands

CATALOG, NEWPCODE

Parameter Description

path_program The full path to the new version of a compiled program.

user Process ID the administrator assigns to a UniData session. If you
specify more than one user, separate user numbers with spaces.

newversion Parameters
 1-327

NFAUSER

Syntax

NFAUSER(“username”, “password”)

Description

Beginning at UniData 5.0, a Network File Access (NFA) connection from an

NFA client requires a valid user name and password. If the client connection

is made via udtelnet, this information is available and passed to the NFA

server for connecting. If the session is a console session, the system prompts

for the user name and password when a connection is requested, such as

when you OPEN the first NFA file on a database.

UniBasic now provides the NFAUSER function which enables you to set the

user name and password in a UniBasic program.

Parameters

The following table describes each parameter of the syntax.

After running this function and providing a valid user name and password

combination, an NFA connection no longer prompts for this information,

regardless if it is from the console or via udtelnet. NFAUSER does not

validate the user name/password combination, but registers them in an

internal variable for later use.

Parameter Description

username A valid user name on the NFA server to which you are connecting.

password The password corresponding to username.

NFAUSER Parameters
1-328 UniData Commands Reference

NODIRCONVERT

Syntax

NODIRCONVERT [ON | OFF]

Description

The NODIRCONVERT command provides the ability to read and write

items in a DIR-type file without translating any characters.

Parameters

The following table describes each parameter of the syntax:

Parameter Description

ON Newlines are not converted to field marks when read from a DIR-
type file.

OFF READ statements convert newlines to field marks. The WRITE
statement converts them back to newlines. This is the default setting.

NODIRECONVERT Parameters
 1-329

ON.ABORT

Syntax

ON.ABORT command

Synonym

ON-ABORT

Description

The ECL ON.ABORT command identifies a command that UniData executes

when a UniBasic program aborts. command may be an ECL command, a

paragraph, or a directly or globally cataloged UniBasic program. This setting

remains in effect until you clear it with the CLEAR.ONABORT command.

Note: UDT.OPTIONS 105, U_EXECUTE_ONABORT, determines whether to
allow ON.ABORT to take effect from a PERFORM or EXECUTE statement in
UniBasic. For more information about this option, see the UDT.OPTIONS
Commands Reference.

Examples

The following is a VOC entry for a paragraph called APOLOGY. This

paragraph displays “This program has terminated. We are sorry for the

inconvenience.”

VOC RECORD ID==>APOLOGY
0 @ID=APOLOGY
1 F1=PA
2 F2=DISPLAYThis program has terminated. We are sorry for the
inconvenience.
1-330 UniData Commands Reference

Here is a UniBasic program that always aborts because it contains the ABORT

command:

DISPLAY “This example shows what happens when a program aborts if
you set ON.ABORT in UniData.”
DISPLAY “For more information about the ON.ABORT command, refer to
the following material:”
ABORT
DISPLAY “UniData Commands Reference”

This example sets ON.ABORT to the paragraph APOLOGY, then runs

TEST_PROG, which aborts when it reaches the ABORT command. Then

APOLOGY executes, displaying its message.

Finally, the cursor returns to the UniData colon prompt.

: ON.ABORT APOLOGY
: RUN BP TEST_PROG
This example shows what happens when a program aborts if you set
ON.ABORT in UniData.
For more information about the ON.ABORT command, refer to the
following material:
This program has terminated. We are sorry for the inconvenience.
:

Related Command

CLEAR.ONABORT
 1-331

ON.BREAK

Syntax

ON.BREAK command

Synonym

ON-BREAK

Description

The ON.BREAK command executes command, a VOC paragraph, or a

sentence when the user presses the interrupt key during execution of

UniQuery statement in the current UniData session. By default, the cursor

returns to the environment from which the ON.BREAK command was

executed.

Tip: Use ON.BREAK to allow users to break out of report display, but then offer a
menu rather than allowing them access to the ECL prompt.

For more information on creating VOC sentences and paragraphs, see Using
UniData.

The interrupt key must first be enabled by setting PTERM -BREAK ON. See

your operating system documentation for instructions on setting the

interrupt key.

After the user presses the break key, UniData displays the default break

message:

BREAK: Enter Q<return> to Quit. Any other character to continue

ON.BREAK does not change or remove this prompt. command executes after

the user enters Q and presses ENTER.
1-332 UniData Commands Reference

Examples

The following example displays the VOC sentence BREAK.KEY:

001: S
002: DISPLAY You have pressed the BREAK key.

The following example demonstrates the effect of setting ON.BREAK to

execute the preceding sentence. First ON.BREAK is set to execute

BREAK.KEY. Then the user executes LIST CLIENTS LNAME.

: ON.BREAK BREAK.KEY
: LIST CLIENTS LNAME
LIST CLIENTS LNAME 11:27:54 Jun 06 1999 1
CLIENTS... Last Name......
9999 Castiglione
10034 Anderson
9980 Ostrovich
10015 di Grigorio
...
Enter <New line> to continue...

At this point, the user presses the BREAK key. The default prompt displays,

to which the user responds by entering Q and pressing ENTER. Notice that

the header for the report displays again.

BREAK: Enter Q<return> to Quit. Any other character to continueQ
LIST CLIENTS LNAME 11:30:45 Jun 06 1999 2
CLIENTS... Last Name......

Finally, the sentence BREAK.KEY executes, and the cursor returns to the ECL

prompt:

You have pressed the BREAK key.
:

Related Commands

CLEAR.ONBREAK, PTERM
 1-333

PAGE

Syntax

PAGE filename record

Description

The ECL PAGE command displays the contents of a record to the screen.The

display pauses at the bottom of each page and continues after the user

presses ENTER.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename A UniData file name.

record A record in filename. You can list only one record ID on the command
line.

PAGE Parameters
1-334 UniData Commands Reference

Example

The following example displays a record from the INVENTORY demo file.

Notice that a UniData delimiter is displayed as ‘ y.’ Your system may display

a different character.

: PAGE CLIENTS 9999
Paul
Castiglione
Chez Paul
45, reu de Rivoli
Paris
75008
France
3342425544y3342664857
WorkyFax
(EOF)Enter h for help, <CR> for next page
 1-335

PATHSUB

Syntax

PATHSUB

Description

The ECL PATHSUB command changes paths and subpaths globally in all

catalog entries and file pointers in the VOC. You do not have to provide the

full path, just the part that you want to change. PATHSUB first selects all local

catalog entries and for each item, replaces the old path with the new path.

Then PATHSUB selects all DIR and F-type pointers and substitutes the new

path for the old.

Tip: Use PATHSUB to change the VOC pointers after moving an account.

Check your entry carefully, because PATHSUB replaces the Original sub-path with
the path you enter with no verification that the path is valid.
1-336 UniData Commands Reference

Example

The following example shows output from PATHSUB on UniData for UNIX.

In this example, the user is changing an account directory subpath name

from /disk1 to /usr (the full paths are/disk1/ud60 and /usr/ud60) on

UniData for UNIX. Notice that UniData prompts for the old and new paths,

then echoes them back for confirmation before continuing. The subsequent

messages follow processing as UniData looks for the old path in VOC records

that point to locally cataloged programs (finding none), then in VOC records

that contain file pointers (finding 9).

:PATHSUB
This program allows you to globally substitute paths or sub-paths
in the voc. For example, if you move your accounts from /usr/ud to
/usr2 you could update all voc entries to reflect this path with
this program.

Original sub-path : /disk1
New sub-path : /usr
Old path: /disk1
New path: /usr
Is this acceptable? (y/n) : y
Updating local catalog entries in voc...

4 records selected to list 0.

Updated 0 local catalog entries in voc.

Updating file pointers in voc...

48 records selected to list 0.

Updated 9 file pointers in voc.

Voc has been updated.
 1-337

PAUSE

Syntax

PAUSE [wait_time]

Description

The ECL PAUSE command suspends the UniData process that issues the

command for the amount of time specified by wait_time. Notice the following

points when executing PAUSE:

■ PAUSE has no effect if wait_time is a negative number, or if another

UniData process has previously issued a command for this process.

■ To pause a process indefinitely, omit wait_time, or specify a wait_time
of 2.

■ PAUSE must be executed by the process to be paused.

Examples

The following series of screen displays demonstrate execution of the ECL

PAUSE command. First, a UniData session is paused. Following this, a

separate screen display shows the paused session listed as output of the

LIST.PAUSED command, which was executed from a different UniData

session. The final screen display demonstrates waking the paused session

with the WAKE command.

: PAUSE
: LIST.PAUSED
Number of Paused Users
~~~~~~~~~~~~~~~~~~~~~~

1
UDTNO USRNBR UID USRNAME USRTYPE TTY LEFTTIME TOT_TIME
1 1052 1283 carolw udt pts/0 - -:
Screen Example
: WAKE 1052
:

1-338 UniData Commands Reference



Related Commands

UniData

LIST.PAUSED, WAKE

UniBasic Commands

PAUSE, WAKE — For information, see the UniBasic Commands Reference.
   1-339



PHANTOM

Syntax

PHANTOM process

Description

The ECL PHANTOM command executes process in the background. process

can be an ECL command, a paragraph, or a globally cataloged program.

UniData stores the output from the background process in the _PH_ file

under a record name made up of the users login name concatenated with the

internal system time and the process ID.

Since the task is running in the background, any processes that require input

should have an associated DATA statement, or have data in the DATA queue.

If a request for input that would normally be directed to the display terminal

is made to a background process, the process aborts.

If a login paragraph exists in the VOC file of the account from which you

issue the PHANTOM command, UniData executes the login paragraph

before executing the background process. You may want to test @USER.TYPE

in your login paragraph and not execute any processing that should be

executed only in an interactive UniData session.

Warning: Background processes you create are independent of your process. They
will survive as phantom processes even if you terminate your process (by logging out
of the system for instance). Since UniData stores the output from phantom processes
in _PH_, this can create a large _PH_ file.

@USER.TYPE returns the type of process currently running. There are three

types of processes:

■ Normal terminal processes (@USER.TYPE = 0).

■ Background (PHANTOM) processes (@USER.TYPE = 1).

■ Redirected standard input (@USER.TYPE = 2).
1-340 UniData Commands Reference



Starting PHANTOM Processes from the Operating System

You can invoke UniData from the operating system, including a PHANTOM

command on the same command line using the following syntax:

udt PHANTOM process

On UniData for UNIX, the shell functions pipe ( | ) and I/O redirection ( > )

also work with udt:

% echo “LIST CLIENTS ALL” | udt > out &

Tip: Such udt processes do not work within all C shell environments, but function
properly under the UNIX Bourne shell.

PHANTOM Command Exit Codes

When phantom processes are running, you may see an error message like the

following, where code is an exit code number:

Phantom run basic error exit code

The following table lists the exit codes generated by phantom processes.

Code Description

1 Runtime error.

3 User abort statement.

4 Phantom process requested input data.

5 Phantom process was interrupted.

6 Message queue error.

PHANTOM Exit Codes
   1-341



Examples

The following example executes the paragraph CUST.PROCESS as a

phantom. Note that this is a simple representation. It is not unusual for other

things to occur before the completion message appears.

: PHANTOM CUST.PROCESS
: PHANTOM process 5370 started.
COMO file is _PH_/ud60151599_5370/
PHANTOM process 5370 has completed.

In the next example, UniData processes a UniQuery statement in the

background and stores the output in the _PH_ file:

: PHANTOM LIST CLIENTS
: PHANTOM process 13495 started.
COMO file is ‘_PH_/peggys61432_13495’.

The LIST command confirms the existence of the output file

peggys61432_13495:

: LIST _PH_
LIST _PH_ 17:04:48 Jun 06 1999 1
_PH_......
O_TEST_SES
SION
peggys6143
2_13495
2 records listed
1-342 UniData Commands Reference



The SPOOL command in the next example displays the output of the above

process to the terminal:

: SPOOL _PH_ peggys61432_13495 -T
_PH_:
peggys61432_13495
LIST CLIENTS NAME COMPANY ADDRESS CITY STATE ZIP COUNTRY PHONE
PHONE_TYPE
17:03:53 Jun 06 1999 1
CLIENTS 9999
Name Paul Castiglione
Company Name Chez Paul
Address 45, reu de Rivoli
City Paris
State/Territory
Postal Code 75008
Country France
Phone Number (33) (4) 24-25-54-4
(33) (4) 26-64-85-7
Phone Category Work
Fax
CLIENTS 10034
Name Fredrick Anderson
Company Name Otis Concrete
Address 854, reu de Rivoli

City Paris
Enter <New line> to continue...
   1-343



PORT.STATUS

Syntax

PORT.STATUS [USER username |PIDpid |PORTdevice | LPTR | FILEMAP |

CALL.STACK ]

Description

A new ECL command, PORT.STATUS, has been added at this release.

PORT.STATUS displays information about resource usage for a udt process

that is running.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

USER username Lists information only for the username you specify.

PID pid Lists information only for the pid you specify.

PORT device Lists information only for the device you specify.

LPTR Sends output to the printer.

FILEMAP Lists the files open in UniBasic for the pid you specify. You
must use this option with this PID pid option.

CALL.STACK Lists the current ECL stack for the pid you specify. If the
process is running a UniBasic program, UniData also
displays the UniBasic call stack.

PORT.STATUS Parameters
1-344 UniData Commands Reference



Examples

The following example illustrates the output from the PORT.STATUS

command when you use the USER option:

: PORT.STATUS USER claireg

Licensed/Effective # of Users Udt Sql Total
32 /32 1 0 1

Udtno Pid User Port Last command processed
1 26345claireg pts/t1 PORT.STATUS USER claireg

: PORT.STATUS USER claireg
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid User Port  Last command processed
1 26345 claireg pts/t1 PORT.STATUS USER claireg
2 26433 claireg pts/0  AE

The next example shows the output from PORT.STATUS when you use the

PID option:

: PORT.STATUS PID 26433
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid  User Port  Last command processed
2 26433 claireg pts/0 AE

The next example illustrates the FILEMAP option of the PORT.STATUS

command:

: PORT.STATUS PID 26433 FILEMAP
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid  User Port  Last command processed
2 26433 claireg pts/0 AE

S File names
O /home/claireg/VOC
O /home/claireg/AE_COMS
O /liz1/ud52/sys/AE_DOC
O /home/claireg/VOC
   1-345



The final example shows the output from the PORT.STATUS command with

the CALL.STACK option:

: PORT.STATUS PID 26433 CALL.STACK
Licensed/Effective # of Users Udt Sql Total

32 /32 2 0 2
Udtno Pid User Port  Last command processed
2 26433 claireg pts/0 SELECT CUSTOMER WITH STATE = “CO”

Session is not in BASIC.
ECL session stack
AE
LIST CUSTOMER
SELECT CUSTOMER WITH STATE = “CO”
SELECT CUSTOMER WITH STATE = “CO”
1-346 UniData Commands Reference



PRIMENUMBER

Syntax

PRIMENUMBER number

Description

The ECL PRIMENUMBER command displays the first prime number that is

equal to or greater than number.

Example

In the following example, UniData returns the prime number 449, which is

the first prime number greater than or equal to 444.

: PRIMENUMBER 444
PRIME number is 449
   1-347



PRINT.ORDER

Syntax

PRINT.ORDER [0 | 1]

Synonym

PRINT-ORDER

Description

The ECL PRINT.ORDER command determines the order in which UniData

completes print jobs and sends them to the printer. This setting is meaningful

only when more than one print job at a time is active in a UniBasic program.

Printer units do not close in any specific order by default.

For more information on directing printing in UniData, see Administering
UniData.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

no parameter UniData displays the current order.

0 Default. No specific order is used.

1 UniData closes the most recently used printer first.

PRINT.ORDER Parameters
1-348 UniData Commands Reference



Related Commands

UniData

SP.ASSIGN

UniBasic

PRINT ON – For information, see the UniBasic Commands Reference.
   1-349



PROTOCOL

Syntax

PROTOCOL line [“options”]

Description

The ECL PROTOCOL command sets data line transmission characteristics

and protocols for a line. The line must already be attached.

Tip: Use the SETLINE command to define a tty device. Use the LINE.ATT command
to attach a communication line to that device to your process.

Parameters (UniData for UNIX)

The following table describes each parameter of the syntax:

For more information on the stty command, see your host operating system

documentation.

Example (UniData for UNIX)

The following example sets line 0 on a UNIX operating system with

■ Baud rate of 9600.

■  No echo on input.

Parameter Description

line A tty device defined by the SETLINE command.

options A group of tty attributes. The options for this command are the same
as the UNIX stty and termio commands. options must be enclosed in
double quotation marks. If you do not indicate any options, UniData
displays the current settings.

PROTOCOL Parameters
1-350 UniData Commands Reference



■  Canonical process turned off (for input).

: LINE.ATT 0
: PROTOCOL 0 “9600 -echo -icanon”

Parameters (UniData for Windows Platforms)

The following table describes each parameter of the syntax.

Include the options, separated by spaces, in a string enclosed with quotation

marks, as follows:

PROTOCOL 0 “Baud = 9600 xon = on”

Parameter Description

line The line number assigned to the device with the SETLINE
command.

BAUD = b The baud rate for the communication device. May be a baud
rate or a baud rate index.

DATA = d The number of bits in the bytes transmitted and received.
Can be from 4 to 8.

STOP = s The number of stop bits; may be 1, 1.5, or 2.

Parity = p The method of marking boundaries of characters. May be
none, even, odd, mark, or space.

to = on | off Controls behavior of transmission if input buffer
approaches full. If to = off, transmission stops; if to = on
(recommended) transmission does not stop.

xon = on | off Select/clear Xon/Xoff flow control. If xon = on, Xon/Xoff is
selected.

odsr = on | off DSR handshaking.

octs = on | off CTS handshaking.

dtr = on | off | hs DTR circuit.

rts = on | off | hs |tg RTS circuit.

idsr = on | off DSR sensitivity.

PROTOCOL Parameters
   1-351



Example (UniData for Windows Platforms)

In the following example, PROTOCOL displays the current settings for a

COM port:

: LINE.STATUS
LINE# STATUS PID USER-NAME DEVICE-NAME
0 Available N/A N/A COM1

Line number(s) are attached by the current udt process:
None

: LINE.ATT 0
LINE 0 ATTACHED
: PROTOCOL 0
Settings for line 0:
Baud Rate = 1200Parity = EvenData Bits = 7Stop Bits = 1.

Related Commands

UniData

LINE.ATT,LINE.DET, LINE.STATUS, SETLINE, UNSETLINE

UniBasic

GET, SEND — For information, see the UniBasic Commands Reference.
1-352 UniData Commands Reference



PTERM

Syntax

PTERM [-BREAK {OFF | ON}] [-DISPLAY] [-ERASE “char”] [-FULL] [-HALF

{LF | NOLF}] [-KILL “char”] [-NOXOFF] [-XOFF]

Description

The ECL PTERM command establishes terminal settings. These settings

remain in effect until the UniData session ends or until the process executes

another PTERM command.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-BREAK {OFF | ON} Toggles the interrupt character off and on.

■ OFF – Disables the interrupt key.

■ ON – Default. Enables the interrupt key.

-DISPLAY Displays the current tty setting for your terminal.

-ERASE “char” Establishes the value (char) of the erase character. You
cannot set char to its current value. char is a single ASCII
character.

-FULL Establishes full-duplex mode for your terminal. Under
full-duplex, all characters typed in echo to the screen.
Full-duplex is the default value.

PTERM Parameters
   1-353



Examples

In the following example, UniData changes some terminal settings:

■  Disables the interrupt key.

■  Changes the erase character to ^B (UniData does not display the

control character on the command line when you enter it).

■  Disables the XON/XOFF feature.

:PTERM -BREAK OFF -ERASE ““ -NOXOFF
:

In the next example, UniData displays the current values of PTERM:

: PTERM -DISPLAY
Erase =^B = 02 octal
Kill = ^U = 025 octal
FULL duplex.
XOFF disabled(have to physically turn off XON/XOFF on smart
terminals).
BREAK OFF
:

-HALF {LF | NOLF} Establishes half-duplex mode for your terminal. Under
half-duplex, characters you enter at your terminal do not
echo to the screen.

■ LF – UniData does not echo a carriage return with a

line feed. This is the default.

■ UniData echoes a carriage return with a line feed.

-KILL “char” Establishes char as the kill character. char is a single ASCII
character.

-NOXOFF Disables support for XON/XOFF. The default value is
XON/XOFF enabled.

-XOFF Establishes XON/XOFF support for your terminal.
When you enable the XON/XOFF feature, CTRL-S stops
output to the screen. CTRL-Q resumes output.

Parameter Description

PTERM Parameters (continued)
1-354 UniData Commands Reference



PTRDISABLE

Syntax

PTRDISABLE printer [-c |-w]

Synonym

STOPPTR

Description

The ECL PTRDISABLE command prevents UniData from printing jobs that

are associated with a queue named printer.

On UniData for Windows Platforms, only users with Full Control

permissions on a printer can control the printer with PTRDISABLE and

PTRENABLE. Check Permissions on the Security tab of the printers

Properties sheet to determine who has permissions.

Tip: To resume printing, use the PTRENABLE command.
   1-355



Parameters

The following table describes each parameter of the syntax.

Examples

In the following example, taken from UniData for UNIX, UniData disables a

print queue called hpzone3:

: PTRDISABLE hpzone3
printer “hpzone3” now disabled
:

The next example, taken from UniData for Windows NT, disables a local

printer called LETTER:

PTRDISABLE LETTER

: LISTPTR
Unit.. Printer...................
Port.......................Status..
0 LETTER \\DENVER4\hpzone3 Paused
1 \\DENVER4\hpzone3 hpzone3 Running
2 LEGAL \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2 hpzone2 Running

Tip: You can use this command in conjunction with the SETPTR options FORM and
DEST to turn off print queues associated with different forms and to load new forms
into the printer and clear paper jams.

Parameter Description

printer Name assigned to a print queue with the SETPTR command and
the DEST option.

-c Cancels the current print job before disabling the print queue.

Note: This option works with UNIX System V releases only.

-w Allows the current print job to complete before disabling the print
queue.

Note: This option works only with UNIX System V releases.

PTRDISABLE Parameters
1-356 UniData Commands Reference



Related Commands

PTRENABLE, SETPTR
   1-357



PTRENABLE

Syntax

PTRENABLE printer

Synonym

STARTPTR

Description

The ECL PTRENABLE command resumes printing jobs that are associated

with printer. printer is the name of a print queue that was disabled by a

PTRDISABLE command.

On UniData for Windows Platforms, PTRENABLE resumes printing after

you pause the printer through Start > Setting > Printers. Only users with Full

Control permissions on a printer can control the printer with PTRDISABLE

and PTRENABLE. Check Permissions on the Security tab of the printers

Properties sheet to determine who has permissions.

Tip: Use the SETPTR command to assign a name to printer.

Use the PTRENABLE command to load new forms into the printer and clear paper
jams.

Examples

In the following example, taken from UniData for UNIX, UniData enables

printer queue hpzone3, which allows all print jobs destined for this queue to

print:

: PTRENABLE hpzone3
printer “hpzone3” now enabled
:

1-358 UniData Commands Reference



In the next example, taken from UniData for Windows NT, UniData enables

a local printer called LETTER, which allows all print jobs sent to this printer

to print:

: PTRENABLE LETTER
: LISTPTR
Unit.. Printer...................
Port.......................Status..
0 LETTER \\DENVER4\hpzone3 Running
1 \\DENVER4\hpzone3 hpzone3 Running
2 LEGAL \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2 hpzone2 Running
:

Related Commands

PTRDISABLE, SETPTR
   1-359



1-360 UniData Commands Reference

QUIT
QUIT is a synonym for the BYE command. For more information, see BYE.

Synonyms

BYE, LO



READDICT.DICT

Syntax

READDICT.DICT

Synonym

READDICT-DICT

Description

The ECL READDICT.DICT command reloads DICT.DICT into virtual

memory. Execute READDICT.DICT to apply changes to DICT.DICT made

during the current UniData session.

Note: UniData loads DICT.DICT into memory once at the beginning of each
UniData session to improve performance by eliminating the need to repeatedly open
and read this frequently used file.

READDICT.DICT first looks for a pointer in the VOC to a local DICT.DICT

file. If it exists, UniData reloads that version. If not, UniData reloads the

global version, located in udthome/sys/DICT.DICT on UniData for UNIX or

udthome\sys\DICT.DICT on UniData for Windows Platforms.

READDICT.DICT displays no messages — it just returns you to the ECL

prompt after completion.

For more information about the DICT.DICT dictionary, see Using UniData.
   1-361



REBUILD.FILE

Syntax

REBUILD.FILE filename

Synonym

REBUILD-FILE

Description

The ECL REBUILD.FILE command rebuilds a dynamic hashed file, splitting

or merging groups as needed, based on the split and merge thresholds.

REBUILD.FILE checks every group in the file for a split load and then for a

merge.

This command is useful when many processes access the same dynamic file

and some restriction prevents splitting or merging. The command is also

useful after executing CONFIGURE.FILE to redistribute the keys and data in

accordance with a new modulo, split load, merge load, or split/merge type.

REBUILD.FILE works only on dynamic hashed and dynamic hashed

multilevel subfiles.

For more information on dynamic files, see Using UniData.

Warning: Do not rebuild files when users are accessing them. File corruption could
result.
1-362 UniData Commands Reference



Examples

For the following example memresize changed the modulo of a copy of the

INVENTORY demo database file from 19 to 3. The guide utility suggests

rebuilding the file, and REBUILD.FILE rebuilds the file:

: !guide INVENTORY -o
INVENTORY
Basic statistics:
File type............................... Recoverable Dynamic
Hashing
File size
[dat001].............................. 4096
[over001]............................. 14336
File modulo............................. 3
File minimum modulo..................... 3
.
.
.
Group count:
Number of level 1 overflow groups....... 13
Primary groups in level 1 overflow...... 3
Primary groups over split factor........ 3
.
.
.
Management advice:
Running REBUILD.FILE may improve performance
for access to the file. This conclusion was reached
for the following reasons:
- File has 3 groups over split load.

: REBUILD.FILE INVENTORY

: !guide INVENTORY -O
INVENTORY
Basic statistics:
File type............................... Recoverable Dynamic
Hashing
File size
[dat001].............................. 12288
[over001]............................. 18432
File modulo............................. 11
File minimum modulo..................... 3
File split factor....................... 60
File merge factor....................... 40
...
Group count:
Number of level 1 overflow groups....... 12

Primary groups in level 1 overflow...... 6
...
Predicted optimal size:
   1-363



Records per block....................... 10
Percentage of near term growth.......... 10
Scalar applied to calculation........... 0.00
Block size.............................. 1024
Modulo.................................. 11
...

Notice that executing REBUILD.FILE changed the current modulo from 3 to

11 and guide no longer recommends rebuilding the file.

Related Command

CONFIGURE.FILE
1-364 UniData Commands Reference



RECORD

Syntax

RECORD filename record

Description

The ECL RECORD command displays the group to which a particular

record is hashed. If record does not exist, UniData displays the group to

which the record would hash if it was added.

UniData indicates whether the record exists, and, if more than one record is

in the group, displays the ID and length for each record.

Note: UniData hashes records to groups based on the file modulo. UniData group
numbering starts with 0 (zero), rather than 1.

Tip: Use RECORD to locate and correct record IDs that appear to be duplicates
because one contains nonprinting characters. First, LIST @IDs for a file (without
sorting). Review the list, locating duplicate keys, then execute RECORD on adjacent
records. Depending on the modulo of the file, you may find the real key and the
duplicate in different groups. Then write a UniBasic program to open the file and
delete the offending record (ECL DELETE will not let you specify a key containing a
nonprinting character).

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename A UniData hashed file.

record A record ID in filename.

RECORD Parameters
   1-365



Examples

The following example checks record ID 10086 against the CLIENTS demo

database file and finds that it is hashed to group 14. UniData also displays all

record IDs and the length of each record in the group.

: RECORD CLIENTS 10086
10086 hashed to group 14 and was found
# length @ID
0 100 9994
1 105 10029
2 97 10010
3 101 9975
4 104 10067
5 117 10048
6 112 10086
:

In the following example, as indicated, record 80 does not exist in the

CLIENTS file.

: RECORD CLIENTS 80
80 hashed to group 0 and was not found

# length @ID
0 96 9999
1 102 10034
2 110 9980
3 115 10015
4 102 10072
5 110 10053
6 108 10091
:

Here we add record 80 and execute RECORD again.

: COPY FROM CLIENTS 9999, 80
1 records copied
: RECORD CLIENTS 80
80 hashed to group 0 and was found
# length @ID
0 96 9999
1 102 10034
2 110 9980
3 115 10015
4 102 10072
5 110 10053
6 108 10091
7 9680
:

1-366 UniData Commands Reference



RELEASE

Syntax

RELEASE filename [record]

Description

The ECL RELEASE command clears locks placed on a file or record by

UniData or UniBasic commands that set locks. For more information on

UniData locks, see Developing UniBasic Applications and Administering
UniData.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename UniData file name.

record A locked record in filename.

RELEASE Parameters
   1-367



RELEASE.ITEMS

Syntax

RELEASE.ITEMS

Synonym

RELEASE-ITEMS

Description

The ECL RELEASE.ITEMS command clears all record locks set by your

process.

For more information on UniBasic and UniData locks, see Developing
UniBasic Applications and Administering UniData.

Note: This command does not release locks set by other processes even when executed
by someone logged in as root on UniData for UNIX or as Administrator on UniData
for Windows Platforms. Root or Administrator can execute the ECL
SUPERRELEASE command to clear other users locks.

List active locks with LIST.READU. GETUSER displays your user number.
1-368 UniData Commands Reference



Examples

The following UniBasic program locks a record with the RECORDLOCKU

command and releases the lock by executing RELEASE.ITEMS:

* TESTING LOCKING/RELEASE COMMANDS *
OPEN “ORDERS” TO A ELSE STOP “CANNOT OPEN”
LID = “801”
RECORDLOCKU A, LID ON ERROR STOP
PRINT “RECORD LOCKED WITH RECORDLOCKU”
EXECUTE “LIST.READU”
SLEEP 3
EXECUTE “RELEASE.ITEMS”
PRINT “EXECUTING RELEASE.ITEMS COMMAND”
PRINT “LISTING LOCKS AGAIN”
EXECUTE “LIST.READU”
SLEEP 3
END

The next example locks and unlocks the record by running the preceding

program:

: RUN BP TEST_1
RECORD LOCKED WITH RECORDLOCKU
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
2 7093 1283carolw ts/1 ORDERS 219261 107380 801 X 14:17:27 Jun 08
EXECUTING RELEASE.ITEMS COMMAND
LISTING LOCKS AGAIN
:

   1-369



RESIZE

Syntax

RESIZE [DICT] filename [modulo [,block.size.multiplier | - ]] [TYPE [0 | 1]]

Description

The ECL RESIZE command changes the size of a static data file. UniData

resizes the file based on its original modulo and overflow status, or you can

change its modulo.

To resize a file, sufficient virtual memory to hold a copy of the file must be

available.

RESIZE applies this formula to calculate modulo for the file being resized:

(actual filesize / blocksize)*0.9

Each time you execute RESIZE, UniData applies the same calculation,

causing the file size to increase by two blocks.

For more information on selecting an optimum file modulo number, see

Using UniData.

Warning: Resizing a file while another process is updating the file corrupts the file.

Tip: The ECL system-level memresize command executes more quickly and offers
more options.
1-370 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Parameter Description

no parameter Resizes the file according to its original modulo.

DICT Indicates that a static dictionary file is to be resized.

filename The static file to resize.

modulo New modulo for the resized static file. Must be a prime
number.

block.size.multiplier An integer between 0 and 16, that determines block size:

■ 0 – 512 bytes

■ 1 – 1,024 bytes

■ 2 – 2,048 bytes

■ 4 – 4,096 bytes

■ 8 – 8,192 bytes

■ 16 or greater – 16,384 bytes

- Resizes the file according to its actual size, thus
correcting overflows.

TYPE[0 | 1] Hash type for the resized file.

RESIZE Parameters
   1-371



Examples

In the following example, the CLIENTS demo database static file has a

modulo of 19 and size of 21,504 bytes. Notice that the 21 blocks of the file

consist of one header block, 19 data blocks (the maximum allowed by the

modulo), and one data overflow block. This is confirmed by the message on

line 5 that one group is in level-one overflow.

: FILE.STAT CLIENTS
File name = CLIENTS
Number of groups in file (modulo) = 19
Static hashing, hash type = 0
Block size = 1024
File has 1 groups in level one overflow.
Number of records = 130
Total number of bytes = 14452
Average number of records per group = 6.8
Standard deviation from average = 0.5
Average number of bytes per group = 760.6
Standard deviation from average = 61.3
Average number of bytes in a record = 111.2
Average number of bytes in record ID = 5.7
Standard deviation from average = 8.7
Minimum number of bytes in a record = 93
Maximum number of bytes in a record = 140
Minimum number of fields in a record = 10
Maximum number of fields in a record = 10
Average number of fields per record = 10.0
Standard deviation from average = 0.0
The actual file size in bytes = 21504.
:

1-372 UniData Commands Reference



The next example, resizes the file using a modulo of 23. Notice the changed

statistics and correction of the overflow.

: RESIZE CLIENTS 23
CLIENTS RESIZED from 19 to 23
:
: FILE.STAT CLIENTS
File name = CLIENTS
Number of groups in file (modulo) = 23

Static hashing, hash type = 0
Block size = 1024
Number of records = 130
Total number of bytes = 14452
Average number of records per group = 5.7
Standard deviation from average = 0.7
Average number of bytes per group = 628.3
Standard deviation from average = 75.3
Average number of bytes in a record = 111.2
Average number of bytes in record ID = 5.7
Standard deviation from average = 8.7
Minimum number of bytes in a record = 93
Maximum number of bytes in a record = 140
Minimum number of fields in a record = 10
Maximum number of fields in a record = 10
Average number of fields per record = 10.0
Standard deviation from average = 0.0
The actual file size in bytes = 24576.
:

In the next example, records are added to a file called EMPLOYEES, which

was created for this example. FILE.STAT displays the following statistics for

EMPLOYEES:

■  Number of groups in file this is the modulo number

■  Number of groups in level two overflow and the “Please resize.”

message
   1-373



■  Suggested resize modulo on the last line of the display

: COPY FROM ORDERS TO EMPLOYEES ALL
192 records copied
: FILE.STAT EMPLOYEES
File name = EMPLOYEES
Number of groups in file (modulo) = 2
Static hashing, hash type = 0
Block size = 1024
File has 4 groups in level two overflow. Please resize.

Number of records = 323
Total number of bytes = 28347
Average number of records per group = 161.5
Standard deviation from average = 0.7
Average number of bytes per group = 14173.5
Standard deviation from average = 46.0
Average number of bytes in a record = 87.8
Average number of bytes in record ID = 4.7
Standard deviation from average = 35.0
Minimum number of bytes in a record = 38
Maximum number of bytes in a record = 271
Minimum number of fields in a record = 7
Maximum number of fields in a record = 10
Average number of fields per record = 8.2
Standard deviation from average = 1.5
The actual file size in bytes = 35840.
Suggested resize modulo = 37.
:

The next example resizes EMPLOYEES because of inclusion of the - option.

The modulo is changed to 31.

: RESIZE EMPLOYEES -RESIZE
file EMPLOYEES to 31.
EMPLOYEES RESIZED from 2 to 31
1-374 UniData Commands Reference



Now, look at the file statistics again to see the other changes made:

:FILE.STAT EMPLOYEES
File name = EMPLOYEES
Number of groups in file (modulo) = 31
Static hashing, hash type = 0
Block size = 1024
File has 19 groups in level one overflow.
Number of records = 323
Total number of bytes = 28347
Average number of records per group = 10.4
Standard deviation from average = 0.8
Average number of bytes per group = 914.4
Standard deviation from average = 146.0
Average number of bytes in a record = 87.8
Average number of bytes in record ID = 4.7
Standard deviation from average = 35.0
Minimum number of bytes in a record = 38
Maximum number of bytes in a record = 271
Minimum number of fields in a record = 7
Maximum number of fields in a record = 10
Average number of fields per record = 8.2
Standard deviation from average = 1.5
The actual file size in bytes = 52224.
:

Related Command

memresize
   1-375



REUSE.ROW

Syntax

REUSE.ROW [0 | 1]

Synonym

REUSE-ROW

Description

The ECL REUSE.ROW command determines whether a linefeed is executed

when the UniBasic PRINT @ function references column only, for instance,

PRINT @(10) rather than PRINT @(3,10).

For more information about programming in UniBasic, see Developing
UniBasic Applications.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

0 Default. A line feed is applied before the cursor moves to the specified
column.

1 The cursor moves to the specified column on the same row.

REUSE.ROW Options
1-376 UniData Commands Reference



RUN

Syntax

RUN directory.file program [[-N | (N | (N)] | -G | -D | -E | -F]

Description

The ECL RUN command executes a compiled UniBasic program.

For more information about programming in UniBasic, see Developing
UniBasic Applications.

Parameters

The following table describes each parameter of the syntax:

Parameter Description

directory.file A UniData DIR file that contains a compiled UniBasic program.
You must have a pointer to this file in your VOC.

program A compiled UniBasic program.

-N | (N | (N) The screen display scrolls without stopping. Without this option,
scrolling stops at the bottom of each page, prompting the user to
press return to continue.

-G Executes a cross-reference report (program profile).

-D Invokes the UniBasic debugger immediately.

-E Invokes the UniBasic debugger when a runtime error occurs.

-F Invokes the UniBasic debugger when a fatal error occurs.

RUN Parameters
   1-377



Example

The following example shows the output of the RUN command with the -D

parameter for a program called PSTLCODE_FMT in the BP_SOURCE file of

the demo database. Notice that UniData invokes the UniBasic debugger due

to a problem at line 7 of the program.

: RUN BP_SOURCE PSTLCODE_FMT -D
***DEBUGGER called at line 7 of program BP_SOURCE/_PSTLCODE_FMT
!

Tip: To escape from the UniBasic debugger and return to the ECL colon prompt, enter
END.
1-378 UniData Commands Reference



sbcsprogs

Syntax

sbcsprogs

Description

The system-level sbcsprogs command reports the number of users sharing

globally cataloged UniBasic programs.

Note: Use this command at the operating system prompt, or use the ECL ! (bang)
command to execute it from the ECL (colon) prompt.

Example

The following example shows sbcsprogs output. Reference Count indicates

the number of users currently using the corresponding program.

% sbcsprogs
Program Name Reference Count
/disk1/ud60/sys/CTLG/s/SCHEMA_FILE_CHECK 1
/disk1/ud60/sys/CTLG/s/SCHEMA_SQLNAME_ATTRIBUTES 1
/disk1/ud60/sys/CTLG/s/S_FILE_EXIST_PRIVILEGE 1
/disk1/ud60/sys/CTLG/s/S_VALID_SCHEMA_CHECK 1
/disk1/ud60/sys/CTLG/s/SCHEMA_FILE_LIST 1
/disk1/ud60/sys/CTLG/s/SCHEMA_DEPENDENT_VIEWS 1
/disk1/ud60/sys/CTLG/s/SCHEMA_CRT_READ_MAP 1
/disk1/ud60/sys/CTLG/s/SCHEMA_LIST_USERS 1
/disk1/ud60/sys/CTLG/s/S_GET_FILE_OWNER 1
/disk1/ud60/sys/CTLG/s/SCHEMA_FILE_ATTRIBUTES 1
/disk1/ud60/sys/CTLG/s/SCHEMA_UNIQUE_NAME 1

/disk1/ud60/sys/CTLG/s/S_VALID_NAME_CHECK 1
/disk1/ud60/sys/CTLG/s/S_OPEN_SCHEMA_TABLES 1
/disk1/ud60/sys/CTLG/s/SCHEMA_VIEW_TYPE 1
/disk1/ud60/sys/CTLG/s/S_UPD_SCHEMA_TABLES 1
/disk1/ud60/sys/CTLG/s/S_DB_TYPE_CONV 1
/disk1/ud60/sys/CTLG/s/SCHEMA_SUBTABLE_ATTRIBUTES 1
...
   1-379



SET.DEC
Syntax

SET.DEC [char]

Synonym

SET-DEC

Description

The ECL SET.DEC command changes the character used to display the

decimal point. Any ASCII character is acceptable for char. The default

character is period (.). The setting is effective for the current udt session only.

Tip: Use this command to set the decimal representation for displaying money. For
more information on localizing UniData for use with your language and monetary
system, see UniData International.

Examples

In the following example, the period is displayed for the decimal point:

: LIST INVENTORY PRICE
LIST INVENTORY PRICE 17:27:51 Jun 22 1999 1
INVENTORY. Price.....
53050 $369.95
56060 $98.99

57030 $2,995.95
...

The next example changes the decimal character to a comma (,):

: SET.DEC ,
:

1-380 UniData Commands Reference



The LIST command demonstrates use of the new decimal character:

: LIST INVENTORY PRICE
LIST INVENTORY PRICE 17:32:00 Jun 22 1999 1
INVENTORY. Price.....
53050 $369,95
56060 $98,99
57030 $2,995,95
...
   1-381



SET.LANG

Syntax

SET.LANG [language | CURRENT | AVAILABLE]

Synonym

SET-LANG

Description

The ECL SET.LANG command changes the language within the current

language group. You can specify the language you want by spelling it out in

uppercase letters, or by typing the UniData language number. Type

AVAILABLE after SET.LANG to display a list of languages to choose from, or

type CURRENT to display the current language setting. If you enter

SET.LANG without parameters, UniData displays a usage statement.

For more information on localizing UniData for use with your language and

monetary system, see UniData International.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

language UniData language name. You must enter the language
name in uppercase.

CURRENT Display the settings for the current language.

AVAILABLE Display the available languages in the current language
group.

SET.LANG Parameters
1-382 UniData Commands Reference



Examples

The following example displays the settings for the current language:

: SET.LANG CURRENT
udtlang name: ENGLISH
Date format: 0
Decimal point: .
Thousand delimiter: ,
Money sign: $
:

This example displays the languages available within the current group,

which is ENGLISH:

: SET.LANG AVAILABLE
ENGLISH
ENGLISH_UK
:

Next, we change the language to ENGLISH_UK, and execute SET.LANG

CURRENT to display the changed language:

: SET.LANG ENGLISH_UK
Language ‘ENGLISH_UK’ assigned!
:SET.LANG CURRENT
udtlang name: ENGLISH_UK
Date format: 0
Decimal point: .
Thousand delimiter: ,
Money sign: $
:

Tip: If UniData displays an error message, it could mean the message defaults file for
the language does not exist. (Message defaults files reside in udthome/sys on
UniData for UNIX or udthome\sys on UniData for Windows Platforms.) See
UniData International for information on the language-specific message files.
   1-383



SET.MONEY

Syntax

SET.MONEY sign [POST | PRE]

Synonym

SET-MONEY

Description

The ECL SET.MONEY command changes the UniData delimiter that

represents a currency sign. Use this command when you need to change the

currency sign from the default set for your language. When SET.MONEY is

used without an argument, the command returns a usage message.

The currency sign follows the number in some regions, and UniData honors

this convention when the POST option is used. If POST is not set, the

currency sign precedes the amount.

For more information about this command and other commands related to

using non-English language versions of UniData and the message defaults

file, see UniData International.

Tip: To insert a space between the currency sign and the amount, use an extra space
after the SET.MONEY command.
1-384 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Example

In the following example, the SET.MONEY command sets the currency

denomination to the number sign (#).

: SET.MONEY #
:

Now, when you display data that uses a currency sign, UniData uses the

symbol you assigned with the SET.MONEY command:

: LIST ORDERS PRICE
LIST ORDERS PRICE 14:24:30 Jun 08 1999 1
ORDERS.... Price.....
813 #99.96
#199.87
#69.94
928 #159.95
859 #200.00
974 #99.95
905 #59.95
790 #159.94
#159.94
...

Parameter Description

sign Character that represents currency.

POST Currency sign follows the amount.

PRE Currency sign precedes the amount. This is the default position.

SET.MONEY Parameters
   1-385



SET.THOUS

Syntax

SET.THOUS char

Synonym

SET-THOUS

Description

The ECL SET.THOUS command changes the character that indicates a break

for thousands. A comma (,) is the default character.

This command has the following restrictions:

■ The decimal point and thousand delimiter cannot be the same

character. For instance, when SET.DEC is set as a comma (,), the

period symbol (.) loses its functionality as a decimal point except in

the constants in UniBasic programs and dictionary items.

■ Decimal and thousand delimiters cannot be changed in the middle

of the execution of a UniBasic program.

Examples

The following example lists some totals from the ORDERS demo file. Notice

that UniData uses a comma for the thousands break character:

: LIST ORDERS GRAND_TOTAL
LIST ORDERS GRAND_TOTAL 14:37:42 Jun 08 1999 1
ORDERS.... Grand Total...
912 $779.70
801 $1,799.00
941 $13,999.90

805 $47,555.29
...
1-386 UniData Commands Reference



In the following example, UniData sets the one thousand break character to

a period (.).

: SET.THOUS .
:

The next example shows the display of totals after the thousands character

has changed to a period (.):

: LIST ORDERS GRAND_TOTAL
912 $779.70
801 $1.799.00
941 $13.999.90
805 $47.555.29
...
   1-387



SET.TIME

Syntax

SET.TIME hh:mm[:ss]

Synonyms

SET-TIME, SETTIME

Description

The ECL SET.TIME command sets the time for the entire system.You enter

the time in a 24-hour format (military time) where hh represents hours, mm
minutes, and ss seconds. The seconds portion of the time is optional.

Note: To execute the SET.TIME command, you must log in as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.

Warning: Do not change the system time while the Recoverable File System (RFS)
is running. If you do, you will corrupt the time stamps for RFS.

Example

In the following example, the SET.TIME command sets the system time to 3

minutes and 4 seconds past 1:00 pm:

: SET.TIME 13:03:04
1-388 UniData Commands Reference



SET.WIDEZERO

Syntax

SET.WIDEZERO [float.number]

Synonym

SET-WIDEZERO

Description

The ECL SET.WIDEZERO command sets a range used for comparing very

small numbers. When two floating point numbers differ by less than that

range, UniData considers them to be equal. The SET.WIDEZERO setting is

active for the current UniData session only.

If you do not include float.number, UniData displays the current setting. You

must enclose scientific notation, such as 1.0E-10 in quotation marks.

The default value is 0.0 to be backwardly compatible with previous versions

of UniBasic.

Examples

This example displays the current wide zero setting:

: SET.WIDEZERO
Wide Zero: 0.00E+00
:

In the following example, the SET.WIDEZERO command sets the range at

0.001. In UniBasic, if A=5.9915 and B=5.991, then A=B is true because the

difference between the two numbers, 0.0005 is less than the wide zero value

0.001.

: SET.WIDEZERO 0.001
   1-389



SETDEBUGLINE

Syntax

SETDEBUGLINE port

Description

The ECL SETDEBUGLINE command makes a terminal port number (port)

attachable for dual-terminal debugging with the UniBasic debugger.

For more information on UniBasic and the UniBasic debugger, see Developing
UniBasic Applications.

Example

In the following example, UniData makes a port attachable:

: SETDEBUGLINE ttyv0
:

Related Commands

DEBUGLINE.ATT, DEBUGLINE.DET, UNSETDEBUGLINE
1-390 UniData Commands Reference



SETFILE

Syntax

SETFILE [[path][pointer] [OVERWRITING]]

Description

The ECL SETFILE command creates a file pointer in the VOC for a UniData

file. SETFILE does not work on dictionaries, multilevel subfiles, or

subdirectories. SETFILE assigns the correct file type to the file pointer.

You can set a pointer in a UniData VOC file to a data file in another UniData

account. This feature allows users working in different UniData accounts to

share data files. There are two points to remember about setting a VOC

pointer:

■ A VOC pointer is internal to UniData. On UniData for UNIX, it is not

the same thing as a UNIX link. Because of this, even backup utilities

that follow symbolic links do not automatically follow VOC

pointers.

■ Setting a VOC pointer does not alter the physical location of the data

file. Although you can access the file from the directory where the

pointer resides, the physical location of the file and its indexes

remains unchanged.

Note: When UDT.OPTIONS 87 is on and you delete a synonym for a file in another
account with DELETE.FILE, UniData deletes both the file pointer in the current
directory and the file in the remote account.
   1-391



Parameters

The following table describes each parameter of the syntax.

Examples

Start from the directory that contains the VOC file where you wish UniData

to create the entry for the file pointer. For the following series of examples,

taken from UniData on UNIX, that directory is /home/claireg/demo. In the

next example, the UNIX pwd command confirms the location:

: !pwd
/home/claireg/demo
:

Parameter Description

no parameter UniData prompts for all required information.

path The full or relative path to the file. If you do not indicate
path, UniData prompts for a “treename.” You can specify
a relative path, but you may not include variables, such as
@UDTHOME.

pointer The name of the VOC entry that will be the file pointer. If
you do not indicate a pointer name, UniData prompts for
a “filename.”

OVERWRITING Overwrites the VOC entry for an existing file pointer of
the same name.

Warning: UniData does not prompt for confirmation
before overwriting the VOC entry.

SETFILE Parameters
1-392 UniData Commands Reference



Creating a New File Pointer

In the following example, UniData creates a file pointer named ACCOUNTS

to the UniData file CLIENTS, which resides in another account

(/usr/ud60/demo). Before establishing the pointer, UniData lists the

parameters for the pointer and asks for confirmation.

: SETFILE /disk1/ud60/demo/INVENTORY stock.file
Establish the file pointer
Tree name /disk1/ud60/demo/INVENTORY
Voc name stock.file
Dictionary name /disk1/ud60/demo/D_INVENTORY
Ok to establish pointer(Y/N) = y
SETFILE completed.
:

Use the CT command to display the VOC entry for the new file pointer:

: CT VOC stock.file
VOC:
stock.file:
F
/disk1/ud60/demo/INVENTORY
/disk1/ud60/demo/D_INVENTORY
:

After creating the VOC entry in your own account, you can execute the ECL

LIST command to list the INVENTORY file from that account. Here, the

UNIX pwd command confirms the current location, and ECL LIST command

lists the stock.file file:

: !pwd
/home/claireg/demo
: LIST stock.file PROD_NAME
LIST stock.file PROD_NAME 14:57:02 Jun 08 1999 1
Product
INVENTORY. Name......
53050 Photocopie
r
56060 Trackball
57030 Scanner
31000 CD System
2
10140 Camera
11001 Computer
10150 Camera
...
   1-393



Changing an Existing File Pointer

The OVERWRITING keyword changes the VOC entry pointer. The following

example shows the VOC entry for the CLIENTS demo file in

/home/claireg/demo:

: CT VOC CLIENTS
VOC:
CLIENTS:
F
CLIENTS
D_CLIENTS
:

The next example changes the file pointer to the CLIENTS file in another

account:

: SETFILE /disk1/ud60/demo/CLIENTS CLIENTS OVERWRITING
Establish the file pointer
Tree name /disk1/ud60/demo/CLIENTS

Voc name CLIENTS
Dictionary name /disk1/ud60/demo/D_CLIENTS
SETFILE completed.

To compare the new file pointer to the original one, use the CT command.

Notice that UniData points to a new location for the CLIENTS file.

Warning: OVERWRITING does not prompt for confirmation before removing the
VOC pointer. Also, without the VOC pointer, some users may be unable to access a
file in another account.

: CT VOC CLIENTS
: CT VOC CLIENTS
VOC:
CLIENTS:
F
/disk1/ud60/demo/CLIENTS
/disk1/ud60/demo/D_CLIENTS
1-394 UniData Commands Reference



Executing SETFILE with No Parameters

In the following example, UniData prompts for required information:

: SETFILE
Enter treename = /home/claireg/demo
Enter filename = CLIENTS
Establish the file pointer
Tree name /home/claireg/demo
Voc name CLIENTS
Ok to establish pointer(Y/N) = Y

Pointer CLIENTS already exists, do you want to overwrite(Y/N) = Y
SETFILE completed.

Here is the VOC entry for the new file pointer:

: CT VOC CLIENTS
VOC:

CLIENTS:
DIR
:

Creating File Name Synonyms

You can create a synonym file name by creating a second file pointer to an

existing file. You can then use the original or synonym file name to access the

file.

Note: Delete the VOC entry that creates a synonym by executing:

DELETE.FILE synonym name
   1-395



Re-creating a Deleted File Pointer

To demonstrate recreating a deleted file pointer, we first delete the VOC

pointer to the CLIENTS demo file. The CT command reveals that the VOC

pointer no longer exists, and an attempt to display the records in CLIENTS

generates a message that CLIENTS is not a file name.

: DELETE VOC CLIENTS
‘CLIENTS’ deleted.
: CT VOC CLIENTS
VOC:
CLIENTS is not a record in VOC.
: LIST CLIENTS

Not a filename :
CLIENTS
:

Next, we reestablish the VOC pointer by using SETFILE and pointing to the

demo directory, then confirm with CT that the pointer again exists. Finally,

LIST displays the records in the file:

: SETFILE /disk1/ud60/demo/CLIENTS
Enter filename = CLIENTS
Establish the file pointer
Tree name /disk1/ud60/demo/CLIENTS
Voc name CLIENTS
Dictionary name /disk1/ud60/demo/D_CLIENTS
Ok to establish pointer(Y/N) = Y
SETFILE completed.
:CT VOC CLIENTS
VOC:
CLIENTS:
F
/disk1/ud60/demo/CLIENTS
/disk1/ud60/demo/D_CLIENTS

: LIST CLIENTS
LIST CLIENTS NAME COMPANY ADDRESS CITY STATE ZIP COUNTRY PHONE
PHONE_TYPE
15:24:05 Jun 08 1999 1
CLIENTS 9999
Name Paul Castiglione
Company Name Chez Paul
Address 45, reu de Rivoli
City Paris
State/Territory
Postal Code 75008
Country France
...
1-396 UniData Commands Reference



SETLINE

Syntax

SETLINE [line [path]]

Description

The ECL SETLINE command initializes a communication line for use during

the current UniData session. If you do not specify a parameter, UniData

displays the current setting.

SETLINE creates an editable ASCII file. On UniData for UNIX, this file is

located in udthome/sys/lineinfo. On UniData for Windows Platforms, this

file is located in udthome\sys\lineinfo.

Note: To initialize a line, you must log in as root on UniData for UNIX or as
Administrator on UniData for Windows Platforms. However, any user can use the
SETLINE command to get line information.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

line Line unit number from 0 to 499 of a device to be initialized. If you do
not indicate a line number, UniData returns all line information. If
you indicate the line number without specifying path or devname,
UniData returns information about line.

path On UniData for UNIX, path and name for the physical device, for
instance, /dev/tty01. On UniData for Windows Platforms, identifier
for serial device, for instance, COM1.

SETLINE Parameters
   1-397



Example

In the following example, UniData displays the path and name for the device

to which line 0 is currently attached:

: SETLINE 0
LINE#......: 0
DEVICE-NAME: /dev/pty/ttyv6
:

Related Commands

UniData

LINE.ATT, LINE.DET, LINE.STATUS, PROTOCOL, UNSETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
1-398 UniData Commands Reference



SETOSPRINTER

Syntax

SETOSPRINTER [“UNIX_spooler_command [options]”]

Description

The ECL SETOSPRINTER command executes a UNIX spooler command.

You must enclose the spooler command and options in quotation marks. To

reset the printer command to the default, issue SETOSPRINTER with no

parameters.

Note: This command is supported in UniData for UNIX only.

The command you set with SETOSPRINTER must be listed in the configuration file
UDTSPOOL.CONFIG in udthome/sys. You can edit this file, but write access may
be restricted. For more information about editing the UDTSPOOL.CONFIG file, see
Administering UniData.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

UNIX_spooler_command A UNIX spooler command. Must be enclosed in
quotation marks. Must be defined in
/udthome/sys/UDTSPOOL.CONFIG.

options UNIX spooler command options. Must be enclosed in
quotation marks.

SETOSPRINTER Parameters
   1-399



You can display the setting for the system spooler with the ECL LIMIT

command, which lists maximums for all UniData environment variables:

: LIMIT
...
U_LPCMD: System spooler name = lp -c.
...

In the following example, SETOSPRINTER changes the setting for the UNIX

spooler command:

: SETOSPRINTER “lp”
: LIMIT
...
U_LPCMD: System spooler name = lp -c .
...
1-400 UniData Commands Reference



SETPTR

Syntax

SETPTR unit[,width,length,topmargin,bottommargin] [,mode]

[“spooler_options”[,options]]

Description (UniData for UNIX)

The ECL SETPTR command directs the print spooler for printer unit for the

current UniData session.

The SETPTR option defaults are set internally in UDTSPOOL.CONFIG in

udthome/sys; you can change them only for the current UniData session.

You can configure as many as 31 printer units in a UniData session, including

the default printer (defined as 0). You can configure as many as 255 printer

units per UniData installation (units 0 through 254). UniData uses the UNIX

print spooler command usually lp or lpr.

Tip: To make work sessions consistent among users, place SETPTR commands in the
LOGIN paragraph for each UniData account.

Note: If UDT.OPTIONS 84 is on, and the printer set to a _HOLD_ file, UniData
displays the hold entry name each time a new hold file is created. With
UDT.OPTIONS 84 OFF, UniData displays the _HOLD_ entry name only when
SETPTR or SP.ASSIGN is executed.
   1-401



Parameters (UniData for UNIX)

The following table describes each parameter of the syntax.

Parameter Description

unit Number assigned to a given printer through UNIX: 0–255.
(The default is 0). If you do not indicate a printer unit number,
UniData displays the current printer settings for Unit 0.

width Number of characters per line: 0–1,024 characters. If you do
not want to change this setting, enter a comma as a
placeholder.

length Number of lines per page: 1 to 32,767 lines. If you do not want
to change this setting, enter a comma as a placeholder.

topmargin Number of lines to leave blank at the top of each page: 0–25. If
you do not want to change this setting, enter a comma as a
placeholder.

bottommargin Number of lines to leave blank at the bottom of each page: 0–
25. If you do not wish to change this setting, enter a comma as
a placeholder.

mode Several modes work in conjunction with the SETPTR
command. See “SETPTR Modes (UniData for UNIX)” in this
section. If you do not want to change this setting, enter a
comma as a placeholder.

“spooler_options” UNIX lp or lpr spooler option. Any parameter that you use
with your spooler, you can use with SETPTR. Enclose each
option in quotation marks. For example: “-o noeject”.

options Report formatting and printer control options. See “SETPTR
Options (UniData for UNIX)” in this section.

SETPTR Parameters
1-402 UniData Commands Reference



SETPTR Modes (UniData for UNIX)

The following table lists the SETPTR modes:

Mode Description

1 Sends output to the line printer.

2 Directs output to the serial device indicated by the DEVICE option.

3 Sends output to the _HOLD_ file.

6 Sends output to the _HOLD_ file and to the line printer.

Tip: To print records from the _HOLD_ file, use the ECL “SPOOL”
command.

Use in conjunction with BANNER or BANNER UNIQUE to store the
output in a record you name.

9 Sends output to the line printer and suppresses terminal display of
the _HOLD_ entry name.

SETPTR Modes
   1-403



SETPTR Options (UniData for UNIX)

The following table lists the SETPTR options.

Option Description

BANNER [string] By default, SETPTR adds a banner page that shows the
owner’s user ID. You can override the default display
with the BANNER option where string is a message for
the banner page. If you redirect the output to the
_HOLD_ file, the print record identifier in the _HOLD_
file becomes P_string_n. (The default record identifier in
the _HOLD_ file is P_unit_n.)

string can be as long as 96 characters, but cannot contain
spaces. It must be followed by a comma, if options follow.

BANNER UNIQUE
(string)

Places string in the record identifier. By default, the
record identifier is P_unit_n, where unit is the printer unit
number, and n is a 4-digit number that increments
automatically. If you indicate string, the identifier
becomes P_string_n.

Note: This counter is stored in DICT
_HOLD_NEXT.HOLD (Attribute 1). The counter
automatically rolls back to 1 after incrementing to 9999.
Users must have write permissions to DICT _HOLD_ to
use this option.

string can be as long as 96 characters, but cannot contain
spaces. It must be followed by a comma, if options
follows.

BRIEF Suppresses the verification prompt.

COPIES n Prints n copies.

DEFER [time] Delays printing until the specified time by passing the job
to the UNIX at command. Make sure you know what time
zone your machine uses — it may differ from your local
time.

This option requires that you be signed in as root.

Tip: For the syntax for time, see your UNIX documen-
tation or the man pages for information on the “at”
command.

SETPTR Options
1-404 UniData Commands Reference



Tip: Some of the SETPTR options are configurable in the UDTSPOOL.CONFIG file
located in udthome/sys. For more information about editing this ASCII text file, see
Administering UniData.

[DEST | AT] unit Directs the print job to print queue unit, rather than to a
device number. For example, if you have multiple
printers set up to run only checks, you can use this option
to have checks print on the first available check printer. In
this case, your spooler must support classes.

DEVICE filename Directs output to the UNIX device indicated by filename.
Used only with mode 2.

EJECT Ejects a blank page at the end of the print job.

NOEJECT Suppresses the form feed at the end of the print job.

FORM form Assigns a previously defined form to the spooler. DEST
and FORM are concatenated to designate the print queue
name.

LNUM Prints line numbers in the left margin.

NFMT | NOFMT Suspends all UniData print formatting. Use this if you
intend to control print formatting with an application.

NHEAD | NOHEAD Suppresses the banner.

NOMESSAGE Suppresses messages from the UNIX lp spooler.

OPEN Sends output to a file until an SP.CLOSE statement
executes for this print unit. This allows you to save
multiple reports in one file.

Option Description

SETPTR Options (continued)
   1-405



Examples (UniData for UNIX)

To find out the current SETPTR settings for unit 0, enter the SETPTR

command without any options. In the example that follows, notice the

Spooler & options setting which is set for the lp UNIX spooler command and

the -c spooler option.

: SETPTR
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 1
Options are:
Spooler & options: lp -c
:

In the following example UniData assigns the following printer parameters:

■ Column width of 45 characters

■ Page length of 10 lines

■ Top margin of 15 lines

■ Leave the bottom margin undefined (notice the extra comma, which

acts as a placeholder)

■ Use mode 3, which directs output to the _HOLD_ file

■ Use the BANNER option to name the _HOLD_ file record Summary

■ Suspend system formatting

: SETPTR 0,45,10,15,,3,BANNER Summary,NOFMT
Unit 0
Width 45
Length 10
Top margin 15
Mode 3
Options are:
Banner Summary
Nfmt
OK to set parameters as displayed?(enter Y/N) y
Hold Entry _HOLD_/SummaryUnit 0
:

1-406 UniData Commands Reference



Printing Multiple Reports in a Single Print Job

The next example uses the OPEN option with SETPTR to print multiple

reports, which UniData recognizes as a single print job, to a printer or the

_HOLD_ file. Once all the print statements have been issued, you must use

the ECL SP.CLOSE command to spool the print the job.

This sample SETPTR command sequence accomplishes the following:

1. Controls settings for report formatting and printing, including:

■ Leaves settings for page width, length, top margin, and bottom

margin unchanged (the commas act as placeholders for these

parameters)

■ Sends output to the _HOLD_ file by using mode 3

■ Labels the _HOLD_ file record Multiples by using the BANNER

option

■ Opens a print statement input session by using the OPEN

option, thus allowing the user to enter multiple print statements

2. Uses LIST commands to generate multiple reports (including the

LPTR keyword after each statement to direct the statements to the

printer spooler)

3. Uses the SP.CLOSE command to close the print statement input

session and prints the job to the _HOLD_ file

: SETPTR 0,,,,,3,BANNER Multiples,OPEN
Unit 0
Mode 3
Options are:
Banner Multiples
OPEN
OK to set parameters as displayed?(enter Y/N) Y
Hold Entry _HOLD_/Multiples
: LIST CLIENTS LNAME LPTR
: LIST INVENTORY PROD_NAME LPTR
: LIST ORDERS GRAND_TOTAL LPTR
: SP.CLOSE
:

Now, if you look at the contents of the _HOLD_ file you will see that it

contains the job called Multiples.

: LS _HOLD_
Multiples
:

   1-407



Tip: To see the contents of a record in the _HOLD_ file, use your system text editor
or the SP.EDIT command.

SETPTR (UniData for Windows Platforms)

On UniData for Windows Platforms, the SETPTR command maps printers

defined in Windows systems (either local printers or network print devices)

to logical unit numbers.

With SETPTR, you can define up to 31 logical printer units in a single

UniData session. Throughout UniData, you can define up to 255, but only 31

can be defined in a single user session.

The default print unit in UniData is unit 0. You can map this default unit to a

particular device with SETPTR. If you do not map it explicitly, unit 0 is

automatically mapped to one of two printers:

■ The default printer for your Windows system. Check Settings >
Printers to determine which printer is the default.

■ A printer identified by the system environment variable

UDT_DEFAULT_PRINTER. This definition overrides the default

printer for the Windows NT system. Use the MS-DOS SET command

or select Settings > Control Panel > System > Environment to
display or modify UDT_DEFAULT_PRINTER.

Parameters (UniData for Windows Platforms)

The following table describes each parameter of the syntax.

Parameter Description

unit Logical printer unit number; internal to UniData; you can map
this to a Windows printer with the DEST option. Valid values
range from 0 through 254. The default is 0.

[width] The number of characters per line: must be from 0 to 256. The
default is 132.

[length] The number of lines per page. Valid values range from 1 to
32,767 lines. The default is 60.

SETPTR Parameters
1-408 UniData Commands Reference



Note: Users familiar with Pick® conventions should be aware that printer unit
numbers set with SETPTR are not the same as Pick® printer numbers. SETPTR
enables you to define logical printer units, which may be, but are not necessarily,
linked to specific printers. UniData printer unit numbers are used with the PRINT
ON statement in UniBasic to allow multiple concurrent jobs. Use the DEST option
of SP.ASSIGN to specify Pick® printers and forms.

The following table describes modes for SETPTR.

[topmargin] The number of lines to leave blank at the top of each page.
Valid values range from 0 to 25. The default is 3.

[bottommargin] The number of lines to leave blank at the bottom of each page;
must be from 0 to 25. The default is 3.

[mode] The output direction. The default is 1. See separate table.

[“spooler_options”] Options that are valid with the Windows spooler. See separate
table for list of supported options. Enclose these options in
quotation marks.

[options] Report formatting and printer control options. See “SETPTR
Options” in this section.

Mode Description

1 Directs output to a printer only. Default mode.

2 Must be used with DEVICE option. Directs output to the serial device
specified by the DEVICE option.

3 Directs output to a _HOLD_ file only.

6 Directs output to both a _HOLD_ file and a printer.

9 Directs output to a printer. Suppresses display of the _HOLD_ entry
name.

SETPTR Modes

Parameter Description

SETPTR Parameters (continued)
   1-409



The next table describes options for the SETPTR command.

Option Description

BANNER [string] Modifies the default banner line (which is the Windows
user id). Depends on MODE setting; also modifies
_HOLD_ entry name.

BANNER UNIQUE
(string)

Modifies the default banner line and automatically uses
attribute 1 (NEXT.HOLD) in the dictionary for the
_HOLD_ file to create unique entry names for jobs sent to
_HOLD_.

BRIEF Suppresses the verification prompt.

COPIES n Prints n copies. Does not work with mode 3. Default is 1.

DEFER [time] Delays printing until the specified time. Specify the time
in HH:MM format. Does not work with mode 3.

[DEST | AT] unit Directs output to a specific printer or queue. The unit may
be either a local printer or a network printer.

DEVICE name Used with mode 2 only. Directs output to the Windows
device (for instance, a COM port) identified by name.

EJECT Ejects a blank page at the end of the print job.

NOEJECT Suppresses the form feed at the end of the print job.

LNUM Prints line numbers in the left margin.

NFMT | NOFMT Suspends all UniData print formatting.

NHEAD | NOHEAD Suppresses the banner.

OPEN Opens a print file, and directs output to this file until the
file is closed by the SP.CLOSE command.

SETPTR Options
1-410 UniData Commands Reference



The next table describes spooler options you can specify in a quoted string.

Option Description

Orientation The paper orientation. Must be PORTRAIT or
LANDSCAPE. Defaults to the setting in the Default
Document Properties sheet for the printer.

PaperSource The default paper source; must match an available paper
source listed on the Device Settings tab of the printer’s
Properties Sheet.

Duplex Must be NONE, HORIZONTAL, or VERTICAL; default
is NONE.

Note: If the print device does not support duplex
printing, this option is ignored. Jobs print singlesided
and no error message displays.

Form The form to use (for instance, Letter). Must match an
available paper size listed on the Device Settings tab of
the printer’s Properties Sheet.

Mode RAW or WINDOW. Default is RAW, meaning that
printer-specific escape sequences are required for all
formatting.

Note: Specifying formatting options (Form, Font,
FontSize, Orientation, FontStyle, DefaultSource, or
Duplex) in a quoted string automatically switches Mode
to WINDOW.

Prefix The printer-specific escape sequence, specified as a
decimal (not ASCII) value. Valid in RAW mode only.

Font The font name, for instance, “Courier New.”

Note: The UniData spooler creates a “logical font” using
the values you provide for Font, FontSize, and FontStyle.
Windows platforms attempt to find an appropriate font
to use from the ones installed on your computer.

FontSize The font size in points (for instance, 8, 9, 10, 11).

Note: The UniData spooler creates a “logical font” using
the values you provide for Font, FontSize, and FontStyle.
Windows platforms attempt to find an appropriate font
to use from the ones installed on your computer.

SETPTR Spooler Options
   1-411



Examples (UniData for Windows Platforms)

To display information about printers on your Windows system, double-click

My Computer, and then select Printers. Otherwise, if you prefer, from the

Start menu, select Settings, and then click Printers. In the following example,

there are three local printers and one network print device defined. The local

printers may point to the same physical print device or to different physical

print devices. The Printers dialog box appears:

FontStyle Must be Regular, Italic, Bold, Underline, or StrikeOut.
Default is Regular.

Note: The UniData spooler creates a “logical font” using
the values you provide for Font, FontSize, and FontStyle.
Windows NT and Windows 2000 attempt to find an
appropriate font to use from the ones installed on your
computer.

LeftMargin The left margin of the page, in inches.

RightMargin The right margin of the page, in inches.

TopMargin The top margin of the page, in inches.

Note: TopMargin is measured beginning at the value of
the SETPTR topmargin option (default is 3 lines). If
topmargin is 3 lines (the default) and TopMargin = 1, the
first printed line is one inch below the third line of the
page.

BottomMargin Bottom margin of the page, in inches.

Note: BottomMargin is measured beginning at the value
of the SETPTR bottommargin option (default is 3 lines). If
bottommargin is 3 lines (the default) and BottomMargin =
1, the first printed line is one inch above the third line
from the end of the page.

Priority Must be from 1 to 99, where 1 is minimum priority and
99 is maximum priority.

JobState The only valid value is PAUSE, which stops all jobs to the
print unit. There is no way to reverse this action.

Option Description

SETPTR Spooler Options (continued)
1-412 UniData Commands Reference



RECAPTURE EXAMPLE

Tip: You can print from UniData to any network print device available to you. A
print device does not need to be visible in the Printers dialog box.
   1-413



You can define local or network printers to UniData by using the SETPTR

command, as shown in the following examples.

: SETPTR 0,,,,,1,AT
LETTER,”TopMargin=1,BottomMargin=1,Font=Courier,FontSize=12”
Unit 0
Mode 1
Options are:
Destination LETTER
Lp options : TopMargin=1,BottomMargin=1,Font=Courier,FontSize=12
OK to set parameters as displayed?(enter y/n) y

: SETPTR 0
Unit 0
Width 105
Length 31
Top margin 3
Bot margin 3
Mode 1
Options are:
Destination LETTER
Lp options : TopMargin=1,BottomMargin=1,Font=Courier,FontSize=12

: SETPTR 1,,,0,0,1,AT \\DENVER4\hpzone3,”Priority=99”
Unit 1
Top margin 0
Bot margin 0
Mode 1
Options are:
Destination \\DENVER4\hpzone3
Lp options : Priority=99
OK to set parameters as displayed?(enter y/n) y

: SETPTR 2,,,,,1,AT LEGAL
Unit 2
Mode 1
Options are:
Destination LEGAL
OK to set parameters as displayed?(enter y/n) Y

: SETPTR 3,,,,,1,AT \\DENVER4\hpzone2,”Form=A4”
Unit 3
Mode 1
Options are:
Destination \\DENVER4\hpzone2
Lp options : Form=A4
OK to set parameters as displayed?(enter y/n)  y
:

Notice the following points:
1-414 UniData Commands Reference



■ The default print device (printer unit 0) is now mapped to the local

printer LETTER. If you use the PRINT command or LPTR with no

print unit specified, your print job is directed to LETTER.

■ Use SETPTR unit to display the current settings for a print unit.

■ When you specify spooler options (TopMargin, BottomMargin),

UniData automatically recalculates the width and length, taking

these into account. Also, when you specify formatting options in a

quoted string, UniData implicitly changes the spooler Mode from

RAW (the default) to WINDOW.

■ You can specify spooler options in a quoted string either before or

after SETPTR options like AT, DEFER.

■ You can map a printer unit to a network print device even if that

device is not displayed in your Printers dialog.

After you have defined printers with SETPTR, you can display a list with the

LISTPTR command, as shown below:

: LISTPTR
Unit.. Printer................... Port.......................Status..
0 LETTER  \\DENVER4\hpzone3 ‘Running
1 \\DENVER4\hpzone3  hpzone3  Running
2 LEGAL  \\DENVER4\hpzone3  Running
3 \\DENVER4\hpzone2  hpzone2  Running

Notice that, in the previous example, the two local printers point to the same

network print device.

Use PTRDISABLE and PTRENABLE (STOPPTR and STARTPTR) to control

the local printers:

: PTRDISABLE LETTER
: LISTPTR
Unit.. Printer................... Port.......................Status..
0 LETTER  \\DENVER4\hpzone3 Paused
1 \\DENVER4\hpzone3  hpzone3 Running
2 LEGAL  \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2  hpzone2 Running
: PTRENABLE LETTER
: LISTPTR
Unit.. Printer................... Port.......................Status..
0 LETTER  \\DENVER4\hpzone3 Running
1 \\DENVER4\hpzone3  hpzone3 Running
2 LEGAL  \\DENVER4\hpzone3 Running
3 \\DENVER4\hpzone2  hpzone2 Running
:

   1-415



Only users with Full Control permissions on a printer can control the printer

with PTRDISABLE and PTRENABLE. Check Permissions on the Security
tab of the printers Properties sheet to determine who has permissions.

Notice that the argument for PTRDISABLE and PTRENABLE is the name of

the local printer (as specified with DEST or AT in SETPTR).

Tip: In the examples in this chapter, the local printers point to a network print device.
PTRDISABLE and PTRENABLE pause or resume the local printer only. They do
not affect the underlying network print device, and they do not affect other local
printers that point to the print device.

You can use the ECL SP.STATUS command to display information about

printers defined with SETPTR and print jobs started from your UniData

session.

The following example shows SP.STATUS output:

: SP.STATUS
Device for LETTER: \\DENVER4\hpzone3
LETTER is Running.
Device for \\DENVER4\hpzone3: hpzone3
\\DENVER4\hpzone3 is Running.
Device for LEGAL: \\DENVER4\hpzone3
LEGAL is Running.
Device for \\DENVER4\hpzone2: hpzone2
\\DENVER4\hpzone2 is Running.

JobId.... User............ Size.... Status... Unit..
Printer..................
241 terric 543 Defered 3 \\DENVER4\hpzone2 \
:

The status of all the printers is Running, and the network print device has a

deferred job.

Depending on how a print device was configured, users in console sessions

may see printer notification messages when a job completes. The following

example shows such a message:

RECAPTURE EXAMPLE
1-416 UniData Commands Reference



Note: The Printing Notification displays only if you are logged in to a console
session. If you are logged in to UniData via TELNET, you will not see the
notification.

Redefining the Default UniData Print Unit

To keep UniBasic applications general, developers typically use (or assume)

printer unit 0, which is the default. You can redefine unit 0 to direct output

from different parts of an application to different physical printers or queues

or to change formatting options with the SETPTR command.

The following example is a very simple paragraph that redefines the default

print unit for different reports:

: CT VOC OUTPUT
VOC:
OUTPUT:
PA
SETPTR 0,80,78,3,3,1,AT LEGAL
RUN BP REPORT_PRINT
SETPTR 0,80,60,3,3,1,AT LETTER
RUN BP LETTER_PRINT
:

Submitting Concurrent Print Jobs

With SETPTR, you can define up to 31 logical printer units per UniData

session. You can use this functionality to submit concurrent print jobs from a

UniBasic application. One common implementation follows:

■ Define two logical printer units (for instance, 0 and 1) that point to

different physical print devices.

■ Direct all lines of a report to one printer with the UniBasic PRINT ON

command (for instance, PRINT ON 0 PRINT.LINE).

■ Direct summary (break) lines to the second printer (PRINT ON 0

PRINT.LINE followed by PRINT ON 1 PRINT.LINE).

In this way, you can print a summary report and a detail report at the same

time.
   1-417



SETTAPE

Syntax

SETTAPE unit [no_rewind_driver][rewind_driver][block]

Description

The ECL SETTAPE command initializes a pointer to a tape unit for use by the

current process. You must initialize a tape unit with the SETTAPE command

before you can access it. If you include unit without any other parameters,

UniData displays the current settings for that tape unit.

On UniData for Windows NT, the SETTAPE command establishes a link

between a UniData internal tape unit number and an NTFS tape device. You

can use SETTAPE to relate unit number to tape devices, or to NTFS or FAT

disk files.

Note: If you are using an NTFS tape drive on a Windows platform, you must
identify the tape drive with its name in UNC format. If you are using a disk file, you
may identify it by its path and file name. The disk file must already exist.

SETTAPE creates an editable ASCII file located in udthome/sys/tapeinfo on

UniData for UNIX and udthome\sys\tapeinfo on UniData for Windows

Platforms. If you attach a tape and change the block size from that specified

in tapeinfo, UniData creates another file in the same directory, tapeatt, which

takes precedence over tapeinfo.

Note: To initialize or update a pointer to a tape unit, you must log in as root on
UniData for UNIX or as Administrator on UniData for Windows Platforms.
1-418 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Example (UniData for UNIX)

The following example displays the settings for tape unit 1:

: SETTAPE 1
unit # = 1.
non rewind device:/dev/rmt/0mn
rewind device :/dev/rmt/0m
block size =4096
:

The next example initializes a pointer to UNIX disk file:

: SETTAPE 4 /tmp/diskfile1 /tmp/diskfile1 16384
unit # = 4.
non rewind device:/tmp/diskfile1
rewind device :/tmp/diskfile1
block size =16384
:

Parameter Description

unit Number, 0–9, indicating the tape unit to be initialized.
unit without any other parameters displays the current
settings for unit.

no_rewind_driver Path and device name of the “no rewind” device driver
for unit. On UniData for Windows Platforms, the driver
must be specified in the UNC format if the device is a
tape drive.

rewind_driver Path and name of the “rewind” device driver for unit.

On UniData for Windows Platforms, the driver must be
specified in the UNC format if the device is a tape drive.

block Block size in bytes. Must be a multiple of 512. If you do
not stipulate a block size, UniData uses 4096.

SETTAPE Parameters
   1-419



Example (UniData for Windows Platforms)

In the following example, UniData displays the settings for tape unit 1:

: SETTAPE 1
unit # = 1.
non rewind device:\\.\tape0
rewind device :r\\.\tape0
block size =4096
:

In the next example, UniData establishes a tape unit that is actually a NTFS

disk file:

: SETTAPE 0 \\.\tape0 R\\.\tape0 4096
:

Related Commands

T.ATT, T.DET
1-420 UniData Commands Reference



shmconf

Syntax

shmconf

Description

The system-level shmconf command runs the interactive shmconf (shared

memory configuration) utility, which sets UniData shared memory

configuration parameters. shmconf is supported on UniData for UNIX only.

For detailed information about shared memory configuration, see

Administering UniData.

Note: Use this command at the operating system prompt, or use the ECL ! (bang)
command to execute it from the ECL (colon) prompt.

Tip: Use the udtconf command to set all UniData configuration parameters.

Example

The following example shows the shmconf display:

% shmconf
AutoConf ChecKConf SaVeConf CaLcCTL SysParam Exit

Users Licensed: 32 Platform: 0000479670 OS: AIX 2 3
NUSERS.....: 64 SHM_LPINENTS....: 10 MIN_MEMORY_TEMP.: 256
SHM_GNTBLS.: 16 SHM_LMINENTS....: 8 COMPACTOR_POLICY: 1
SHM_GNPAGES: 32 SHM_LCINENTS....: 100 VARMEM_PCT......: 50
SHM_GPAGESZ: 1024 SHM_LPAGESZ.....: 8
SHM_FREEPCT: 25 AVG_TUPLE_LEN...: 4
SHM_NFREES.: 1 EXPBLKSIZE......: 64
SHMMAX......: 268435456 SHM_ATT_ADD.: 1073741824
SHMMIN......: 1 SHM_LBA.....: 268435456
PressCtrl +{A |K |V |L |P |E}toperform a command.
Press PF1 to get help information about a field.
   1-421



showconf

Syntax

showconf [-o | -O] filename][-h|-H]

Description

The system-level command showconf displays current settings for UniData

configuration parameters. These values may differ from the settings listed in

utdconfig, for example, if a value specified in udtconfig is inadequate,

UniData recalculates it.

Note: showconf is supported on UniData for UNIX only.

Execute this command at the system prompt, or use the ECL ! (bang) command to
execute it from the ECL (colon) prompt.

Parameters

The following table describes each parameter of the syntax.

Example

The following sample output illustrates the three lists of parameters:

■ Section 1 Neutral parameters

■ Section 2 Non-RFS related parameters

Parameter Description

[-o | -O] filename Directs output to filename.

-h | -H Displays the command usage. If you use this with the
other options, UniData recognizes only the -h option.

showconf Parameters
1-422 UniData Commands Reference



■ Section 3 RFS related parameters

: !showcon f
## Unidata Configuration Parameters
#
# Section 1 Neutral parameters
# These parameters are required by all Unidata installations.
#
# 1.1 System dependent parameters, they should not be changed.
LOCKFIFO=1
SYS_PV=3
# 1.2 Changable parameters
NFILES=60
NUSERS=20
WRITE_TO_CONSOLE=0
TMP=/tmp/
NVLMARK=
FCNTL_ON=0
TOGGLE_NAP_TIME=161
NULL_FLAG=0
N_FILESYS=200
N_GLM_GLOBAL_BUCKET=101
N_GLM_SELF_BUCKET=23
GLM_MEM_ALLOC=10
GLM_MEM_SEGSZ=4194304
# 1.3 I18N related parameter
UDT_LANGGRP=255/192/129
#
# Section 2 Non-RFS related parameters

#
# 2.1 Shared memory related parameters
SBCS_SHM_SIZE=1048576
SHM_MAX_SIZE=67108864
SHM_ATT_ADD=0
SHM_LBA=4096
SHM_MIN_NATT=4
SHM_GNTBLS=40
SHM_GNPAGES=32
SHM_GPAGESZ=256
SHM_LPINENTS=10
SHM_LMINENTS=32
SHM_LCINENTS=100
SHM_LPAGESZ=8
SHM_FREEPCT=25
SHM_NFREES=1
# 2.2 Size limitation parameters
AVG_TUPLE_LEN=4
EXPBLKSIZE=16
MAX_OBJ_SIZE=307200
MIN_MEMORY_TEMP=64
# 2.3 Dynamic file related parameters
GRP_FREE_BLK=5
SHM_FIL_CNT=2048
SPLIT_LOAD=60
   1-423



MERGE_LOAD=40
KEYDATA_SPLIT_LOAD=95
KEYDATA_MERGE_LOAD=40
MAX_FLENGTH=1073741824
PART_TBL=/disk1/ud50/parttbl
# 2.4 NFA server related parameter
EFS_LCKTIME=0
# 2.5 Journal related parameters
JRNL_MAX_PROCS=1
JRNL_MAX_FILES=400
# 2.6 UniBasic file related parameters
MAX_OPEN_FILE=500
MAX_OPEN_SEQF=150
MAX_OPEN_OSF=100

MAX_DSFILES=1000
#2.7 UniBasic related parameters
MAX_CAPT_LEVEL=2
MAX_RETN_LEVEL=2
COMPACTOR_POLICY=1
VARMEM_PCT=50
# 2.8 Number of semaphores per semaphore set
NSEM_PSET=8
# 2.9 Index related parameters
SETINDEX_BUFFER_KEYS=0
SETINDEX_VALIDATE_KEY=0
# 2.10 UPL/MGLM parameter
MGLM_BUCKET_SIZE=50
#
# Section 3 RFS related parameters
# These parameters are only used for RFS which is turned by
# setting SB_FLAG to a positive value.
#
# 3.1 RFS flag
SB_FLAG=1
# 3.2 File related parameters
BPF_NFILES=80
N_PARTFILE=500
# 3.3 AFT related parameters
N_AFT=200
N_AFT_SECTION=1
N_AFT_BUCKET=101
N_AFT_MLF_BUCKET=23
N_TMAFT_BUCKET=19
# 3.4 Archive related parameters
ARCH_FLAG=1
N_ARCH=2
ARCHIVE_TO_TAPE=0
ARCH_WRITE_SZ=0
# 3.5 System buffer parameters

N_BIG=233
N_PUT=8192
# 3.6 TM message queue related parameters
1-424 UniData Commands Reference



N_PGQ=10
N_TMQ=10
# 3.7 After/before image related parameters
N_AIMG=2
N_BIMG=2
AIMG_BUFSZ=102400
BIMG_BUFSZ=102400
AIMG_MIN_BLKS=10
BIMG_MIN_BLKS=10
AIMG_FLUSH_BLKS=2
BIMG_FLUSH_BLKS=2
# 3.8 Flushing interval related parameters
CHKPNT_TIME=300
GRPCMT_TIME=5
# 3.9 Sync Daemon related parameters
N_SYNC=0
SYNC_TIME=0
#
# Section 6 Century Pivot Date
#
CENTURY_PIVOT=1930
LOG_OVRFLO=/liz1/ud52/log/log_overflow_dir
   1-425



SG.LIST

Syntax

SG.LIST [item] [FROM [list.number]]

Description

The SG.LIST command executes the SAVE.LIST command immediately

followed by a GET.LIST command.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

item The name of the savedlist you want to create.

FROM list.number An active list number between 0 and 9. If you do not
specify list.number, UniData assumes 0.

SG.LIST Parameters
1-426 UniData Commands Reference



showud

Syntax

showud

Description

The system-level showud command lists all active UniData daemons.

Note: showud is supported on UniData for UNIX only.

For more information about showud and recoverable files, see Administering
the Recoverable File System.

Note: Use this command at the system prompt, or use the ECL ! (bang) command to
execute it from the ECL (colon) prompt.

Examples

The following displays UniData background processes (daemons) that are

running for a UniData installation with RFS disabled (udtconfig parameter

SB_FLAG = 0):

# $UDTBIN/showud
UID PID TIME COMMAND
root 3527 0:00 /disk1/ud60/bin/cleanupd -m 10 -t 20
root 3525 0:00 /disk1/ud60/bin/sbcs -r
root 3520 0:00 /disk1/ud60/bin/smm -t 60
   1-427



smmtest

Syntax

smmtest

Description

The system-level smmtest command tests the UNIX and UniData

configuration values. This process takes 10 to 20 seconds to complete.

Note: smmtest is supported on UniData for UNIX only.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
it from the ECL (colon) prompt.

Example

The following example shows a smmtest display:

: !smmtest
Testing udt configuration values ...
End of parameter checking!
*** NUSERS (40)*3 mustbe<=SEMMNU (100)
End of IPC checking!
==> Please do the following:
(a) Adjust your Unix kernel parameters and reconfigure the kernel

(b) Modify your ‘/usr/ud60/include/udtconfig’ file if necessary
#

1-428 UniData Commands Reference



If you are not logged on as root when you execute this command, you may

get messages related to permissions, as in the next example:

% smmtest
Open /dev/kmem error: Permission denied
Testing udt configuration values ...
End of parameter checking!
Open /dev/kmem error: Permission denied
*** SHM_LNTBLS (50) * 3 must be <= SEMMNU (0)
End of IPC checking!
==> Please do the following:
(a) Adjust your Unix kernel parameters and reconfigure the kernel
(b) Modify your ‘/usr/ud60/include/udtconfig’ file if necessary
:

   1-429



smmtrace

Syntax

smmtrace [-d | -e]

Description

The system-level smmtrace command enables or disables tracing of shared

memory management. If tracing is enabled (-e parameter), and the system is

running smoothly, UniData writes messages to the smm.errlog file at the

shared memory managers (smm) checking intervals. When tracing is

disabled (-d parameter), UniData sends messages to smm.errlog only when

a shared memory problems arises. If you do not include an option, UniData

displays usage.

The smm checking interval is platform-dependent.

Note: To execute the smmtrace command, you must log on as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
it from the ECL (colon) prompt.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-d Disables tracing of shared memory management.

-e Enables tracing of shared memory management.

smmtrace Parameters
1-430 UniData Commands Reference



Example

When you execute this command, UniData does not display a response. The

following example displays the contents of smm.errlog by changing to the

udtbin directory and executing the UNIX more command.

% cd $UDTBIN
% more smm.errlog
SMM trace: Checking IDs of the IPC facilities...
SMM trace: Checking process groups...
SMM trace: Fixing GCTs...
SMM trace: Checking memory utilization...
SMM trace: Receiving messages...
SMM trace: Interrupted.
...
   1-431



sms

Syntax

sms [-h | -g [gct]|-G[shmid]|-l[lct]|-L[pid]|-Sshmid |-d] [-f]

Description

The system-level sms command displays the contents of shared memory

segments or of global or local control tables.

For information about local control tables, global control tables, and

managing shared memory, see Administering UniData.

Note: Use this command at the system prompt, or use the ECL ! (bang) command to
execute it from the ECL prompt.
1-432 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Parameter Description

-h Displays configuration values for global and local control tables
and shared memory segments. On UniData for UNIX, UniData
retrieves the values from the /usr/52/include/udtconfig file. On
UniData for Windows Platforms, UniData retrieves the infor-
mation from the udthome\include\udtconfig file. UniData also
displays the interprocess communication facility identifiers when
smm starts.

-g [gct] Default. Displays global control table use. Each global control table
controls a shared memory segment. Each shared memory segment
is divided into equally-sized global pages. UniData displays the
number of global control tables in use and marks them with a
shared memory identifier. It also displays free global control tables
and marks these with -l. If you indicate a global control table
number (gct). UniData displays the contents of the global control
table.

-G [shmid] Displays global control table use. If you stipulate a shared memory
identifier (shmid) with this parameter, UniData displays page
information for a specific global control table.

-l [lct] Default. Displays local control table use or the contents of a local
control table. Each local control table controls a shared memory
segment, and each shared memory segment is divided into equal-
sized local pages. UniData displays the number of local control
tables in use and marks them with a shared memory identifier. It
also displays free local control tables and marks these with -l. If
you indicate a local control table number (lct), UniData displays
the contents of the local control table.

sms Parameters
   1-433



-L [pid] Displays local control table use. If you stipulate a process ID (pid)
with this parameter, UniData displays additional information for a
specific table in the following subtables:

■ Process Info

■ Counter

■ Memory Info

■ Control Info

Tip: To learn the process ID, enter sms -l. The process ID is the first
number in the leftmost column of the display.

Note: UniData does not display unused entries under Memory
Info and Control Info.

-S shmid Displays local control table use of a shared memory identifier
created by a user (shmid). UniData displays additional information
for a specific table in the following subtables:

■ Process Info

■ Counter

■ Memory Info

■ Control Info

Tip: To display the shared memory identifiers, use the ipcstat
command.

Note: UniData does not display unused entries under Memory
Info and Control Info.

-d Displays values for open UniData dynamic files system-wide,
including:

■ Device number

■ I-node number

■ Flag – a scan flag. If set to 1, splitting and merging is blocked.

■ Modulo – current modulo

■ Counter – users who have the file open

-f Displays if a file system is NFS.

Parameter Description

sms Parameters (continued)
1-434 UniData Commands Reference



Example

The following example shows an sms display that results from the -h

parameter:

% sms -h
Shmid of CTL: 22202
-------------------------------- IDs -----------------------------
----
smm_pid smm_trace PtoM_msgqid MtoP_msgqid ct_semid (values)
232 1 6900 6701 5696 (1,1,1)
-------------------- GENERAL INFO ---------------------

SHM_GNTBLS = 40 (max 40 global segments / system)
SHM_GNPAGES = 32 (32 global pages / global segment)
SHM_GPAGESZ = 256 (128K bytes / global page)
NUSERS = 40 (max 40 process groups / system)
SHM_LPINENTS = 10 (max 10 processes / group)
SHM_LMINENTS = 32 (max 32 global pages / group)
SHM_LCINENTS = 100 (max 100 control entries / group)
SHM_LPAGESZ = 8 (4K bytes / local page)
SHM_FREEPCT = 25
SHM_NFREES = 1
SHM_FIL_CNT = 2048
JRNL_BUFSZ = 53248
N_FILESYS = 200
%

   1-435



SORT

Syntax

SORT(var)

Description

The SORT function enables users to sort a dynamic array. var is the name of

the dynamic array.

The elements in the dynamic array are sorted in ascending order, left-

justified. The dynamic array is sorted by the highest system delimiter in the

array.

■ If the dynamic array contains any attribute marks, the sort is by

attribute,. Values and sub-values remain with the original attribute.

■ If the dynamic array contains value marks and no attribute marks,

the sort is by value. Subvalues are unaffected and remain with the

original value.

■ If the dynamic array contains subvalue marks and neither attribute

marks nor value marks, the sort is by subvalue.
1-436 UniData Commands Reference



SORT.TYPE

Syntax

SORT.TYPE [option]

Synonym

SORT-TYPE

Description

The ECL SORT.TYPE command sets the sort type used throughout UniData

for the current session.

Parameters

The following table describes each parameter of the syntax.

Examples

Note: Before executing the following examples, the demo database file ORDERS was
modified by the addition of data in the CLIENT_NO attribute to better illustrate the
various sort types.

Parameter Description

0 Default. Attributes specified as right-justified in the dictionary are
sorted in numeric order. Nonnumeric data is sorted as 0.

1 Sort order is determined by ASCII value.

2 Numeric characters are sorted before nonnumeric characters.
Nonnumeric characters and symbols are sorted by ASCII value.

SORT.TYPE Parameters
   1-437



The following example demonstrates SORT.TYPE 0 sort type 0 sorts

characters and symbols as if they were 0. Notice that default sort type, 0, is

displayed when the user enters the command without an option.

: SORT.TYPE
SORT.TYPE 0
: SORT ORDERS CLIENT_NO BY CLIENT_NO
SORT ORDERS CLIENT_NO BY CLIENT_NO 09:52:47 Jun 15 1999 1
Client
ORDERS.... Number....
ABC -10
000 000
100000 !
817 A
820 [
823 #
825 a
831 r
836 K
855 {
888 K
889 :
901 <
954 &
BC BC
CDE CDE
001 001
002 003
003 003
...

822 10026
826 10043
816 10045
824 10060
202 records listed
1-438 UniData Commands Reference



The following example demonstrates SORT.TYPE 1, which sorts all data by

ASCII value:

: SORT.TYPE 1
: SORT ORDERS CLIENT_NO BY CLIENT_NO
SORT ORDERS CLIENT_NO BY CLIENT_NO 09:53:00 Jun 15 1999 1
Client
ORDERS.... Number....
100000 !
823 #
954 &
ABC -10
000 000
001 001
002 003
003 003
862 9965
844 9966
...
824 10060
889 :
901 <
817 A
BC BC
CDE CDE
836 K
888 K
820 [
825 a
831 r
855 {
202 records listed
   1-439



This example demonstrates SORT.TYPE 2, which sorts numbers before

characters and symbols; numbers and symbols are then sorted by ASCII

value.

: SORT.TYPE 2
:SORT ORDERS CLIENT_NO BY CLIENT_NO
SORT ORDERS CLIENT_NO BY CLIENT_NO 09:53:17 Jun 15 1999 1
Client
ORDERS.... Number....
ABC -10
000 000
001 001
002 003
003 003
862 9965
844 9966
...
816 10045
824 10060
100000 !
823 #
954 &
889 :
901 <
817 A
BC BC
CDE CDE
836 K
888 K
820 [
825 a
831 r
855 {
202 records listed
1-440 UniData Commands Reference



SP.ASSIGN

Syntax

SP.ASSIGN [B] [Cn][F[unit | form]|[Runit]] [H] [HS] [O] [Iprint_job]

Synonym

SP-ASSIGN

Description

The ECL SP.ASSIGN command assigns print job output. This command

provides Pick ® -like syntax to achieve SETPTR operations. If you enter this

command without any options, UniData does not print a verification prompt

upon execution (equivalent to SETPTR 0,,,,,BRIEF).

Parameters

The following table describes each parameter of the syntax.

Parameter Description

B Equivalent to SETPTR,,,,,BRIEF

Cn Print n (number of) copies.

F[unit | form] Equivalent to SETPTR,,,,,[UNIT | FORM]

Runit Resets the options. Equivalent to SETPTR unit,,,,,

unit–Printer unit number, from 0 through 255. (The default is
zero).

H Sends the output to the _HOLD_ file and the printer. Equivalent
to SETPTR,,,,,6

SP.ASSIGN Parameters
   1-441



Examples

In the following example, taken from UniData for Windows NT, SP.ASSIGN

maps the default print unit to a network print device:

: SP.ASSIGN F\\DENVER4\hpzone3
: SETPTR 0
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 1
Options are:
Destination \\DENVER4\hpzone3
:

In the next example, SP.ASSIGN opens a print file:

: SP.ASSIGN O
: SETPTR 0
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 3
Options are:
Destination \\DENVER4\hpzone3
OPEN
:

HS Sends output to the _HOLD_ file. Equivalent to SETPTR,,,,,3

O Opens a print file and sends printer output to it until SP.CLOSE
is executed. Equivalent to SETPTR,,,,,OPEN.

Iprint_job Disregards the queueing order and size of the job and moves it to
the head of the print queue. print_job is the identifier associated
with a print job. You must have adequate permissions to use this
option.

Parameter Description

SP.ASSIGN Parameters (continued)
1-442 UniData Commands Reference



In the following example, SP.ASSIGN resets all SETPTR options to their

default values:

: SP.ASSIGN R
: SETPTR 0
Unit 0
Width 132
Length 60
Top margin 3
Bot margin 3
Mode 1
Options are:
:

Notice that in each example SETPTR 0 displayed the current settings.
   1-443



SP.CLOSE

Syntax

SP.CLOSE [unit]

Synonym

SP-CLOSE

Description

The ECL SP.CLOSE command closes an open print process for unit.

This command executes the final step to complete a single print process that

results from one or more print commands. The process begins with

SETPTR...OPEN, continues with print commands, and finishes with a

SP.CLOSE command.

Example

The following example opens a print process that prints records from the

CLIENTS, INVENTORY, and ORDERS demo files to a _HOLD_ file and then

closes the print process. The NOHEAD option suppresses the printing of a

header.

: SETPTR 0,,,,,3,OPEN
Unit 0
Mode 3
Options are:
OPEN
OK to set parameters as displayed?(enter Y/N) y
:LIST CLIENTS LNAME WITH LNAME LIKE “P...” LPTR
:LIST INVENTORY PROD_NAME WITH COLOR = “Gold” LPTR
:LIST ORDERS GRAND_TOTAL WITH GRAND_TOTAL > 10000 LPTR

:SP.CLOSE
:

1-444 UniData Commands Reference



Use the LS command to check the contents of the _HOLD_ file. Then, use the

SPOOL command to display the output of the print job to the terminal, as in

the next example:

:LS _HOLD_
P_0000
:SPOOL _HOLD_ P_0000 -T
...
#### ## ##### #### # # #
######### ##
# # ## ## ## # #
# ###### ##### # # # # ## #
######### ####
#### # # # # #### ###### # #
Fri Jun 8 17:08:01 MDT 1999
...
LIST CLIENTS LNAME WITH LNAME LIKE “P...” LPTR 17:08:38 Jun 08
1999 1
CLIENTS... Last Name......
10035 Primm
10016 Pooley
9965 Phillips
10039 Primm
10005 Pappas
10084 Pilano
10047 Parker
7 records listed
...
LIST INVENTORY PROD_NAME WITH COLOR = “Gold” LPTR 17:09:12 Jun 08
1999 1
Product
INVENTORY. Name......
No records listed.
...
LIST ORDERS GRAND_TOTAL WITH GRAND_TOTAL > 10000 LPTR 17:09:25 Jun
08 1999 1
ORDERS.... Grand Total...
941 $13,999.90
805 $47,555.29
834 $825,159.96
802 $16,983.24
833 $69,057.73
...

35 records listed
...
   1-445



SP.EDIT

Syntax

SP.EDIT [record]

Synonym

SP-EDIT

Description

The ECL SP.EDIT command starts a system editor from which you can

display, edit, or print a record in the _HOLD_ file. If you do not enter a record

name, UniData prompts for it.

After you enter SP.EDIT and a record ID, UniData prompts for an action code.

After each action except quit, UniData returns to the action code prompt (?).

If you do not indicate filename, UniData prompts for each file in the _HOLD_

file in sequence, starting with the earliest entry first.
1-446 UniData Commands Reference



Action Codes

The following table lists the SP.EDIT action codes.

Example

In the following example, UniData opens a record in the _HOLD_ file and

then prompts for an action code. The user responds by entering t for terminal

display, and UniData displays the first page of the record:

:SP.EDIT P_0000
Hold item P_0000 - (t) terminal (f) find (s) spool (d) delete or
(Q) quit ?
t
...
#### ## ##### #### # # #
######### ##
# # ## ## ## # #
# ###### ##### # # # # ## #
######### ####
#### # # # # #### ###### # #
Fri Jun 8 17:08:01 MDT 1999
...
LIST CLIENTS LNAME WITH LNAME LIKE “P...” LPTR 17:08:38 Jun 08
1999 1
CLIENTS... Last Name......
10035 Primm
10016 Pooley
Enter h for help, <CR> for next page

Code Name Description

T | t terminal Displays file on terminal.

F | f find Prompts for a search string. After you enter the
string, UniData displays the file, beginning with
the line containing the string, and then returns to
the ? prompt.

Note: Do not enclose the string in quotation
marks.

S | s spool Spools the file to the printer.

D | d delete Deletes the file

Q | q quit Returns to the ECL colon prompt (:).

SP.EDIT Action Codes
   1-447



SP.KILL

Syntax

SP.KILL job

Synonym

SP-KILL

Description

The ECL SP.KILL command stops a UniData print job. When you use the

LPTR keyword to print a job from within UniData, the job number displays

on your terminal.

If your operating system directs print jobs to printers linked to another

machine, this command may not cancel the print job.
1-448 UniData Commands Reference



Example

In the following example, taken from UniData for Windows NT, SETPTR

displays the characteristics of the default print unit. A query is spooled to the

default printer, then SP.KILL removes the print job:

:SETPTR
Unit 0
Width 80
Length 56
Top margin 3
Bot margin 3
Mode 1
Options are:
Defer 19:00
Destination \\DENVER4\hpzone3
Lp options : Form=LETTER

:LIST VOC LPTR
request id is 225
:SP.KILL 225
SP-KILL of Job ‘225’ succeeded.
:

   1-449



SP-LISTQ
SP-LISTQ is a synonym for the LISTPEQS command. For more information,

see LISTPEQS.

Synonym

LISTPEQS
1-450 UniData Commands Reference



SP.STATUS

Syntax

SP.STATUS

Synonym

SP-STATUS

Description

The ECL SP.STATUS command displays the current status of all printers.

Example

The following example shows an SP.STATUS display on UniData for UNIX:

:SP.STATUS
scheduler is running
system default destination: hpzone3
device for hpzone4: /dev/null
device for hpzone3: /dev/null
device for parallel: /dev/c1t0d0_lp
hpzone4 accepting requests since Dec 10 10:21
hpzone3 accepting requests since Dec 10 10:22
parallel accepting requests since Apr 1 14:12
printer hpzone4 is idle. enabled since Dec 10 10:21
fence priority : 0
printer hpzone3 is idle. enabled since Dec 10 10:22
fence priority : 0
printer parallel is idle. enabled since Apr 1 14:12
fence priority : 0
no entries
(EOF)Enter h for help, <CR> for next page
   1-451



The next example shows an SP.STATUS display on UniData for Windows

Platforms:

:SP.STATUS
Device for \\DENVER4\hpzone3: hpzone3
\\DENVER4\hpzone3 is Running.
JobId.... User............ Size.... Status... Unit..
Printer..................
230 terric 10143 Defered 0 \\DENVER4\hpzone3
Device for LETTER: \\DENVER4\hpzone3
LETTER is Running.
:

1-452 UniData Commands Reference



SPOOL

Syntax

SPOOL filename record [recordM...recordN][-O][-T]

Description

The ECL SPOOL command prints the contents of a record or records.

Even though SETPTR mode may be set to 3 or 6 (route to _HOLD_ file),

SPOOL directs output only to the print queue or terminal.

Tip: The SPOOL command is useful for printing text files, such as _PH_ and
_HOLD_ records and for printing UniBasic programs.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The UniData file to be printed.

record The record ID in filename. You can list more than one record by
separating the record IDs with a space.

-O Suppresses display of the file name and the record ID in the output.

-T Displays output to the terminal rather than the printer.

SPOOL Parameters
   1-453



Examples

In the following example, UniData displays the contents of three records

from the ORDERS demo file to the terminal:

:SPOOL ORDERS 801 912 941 -T
ORDERS:
801:
10133
59640
...
10009
50000
Gray
10
139999
:

The following example displays the UniBasic program TEST, which is stored

in the BP directory file:

:SPOOL BP TEST -T
BP:
TEST
PRINT ‘HELLO THERE’
:

1-454 UniData Commands Reference



SQL

Syntax

SQL

Description

The ECL SQL command invokes UniData SQL, the UniData ANSI

Structured Query Language.

For more information about using UniData’s structured query language, see

Using UniData SQL.

Tip: You can open a UniData SQL session and execute a UniData SQL statement on
the same command line from the UniData colon prompt, as in :SQL SELECT
GRAND_TOTAL FROM ORDERS; You can also execute a script file containing
UniData SQL commands in the same manner, as in

:SQL filename

Example

The following example initiates UniData SQL:

: SQL
sql>
   1-455



STACKCOMMON

Syntax

STACKCOMMON [ON | OFF]

Description

The ECL STACKCOMMON command controls whether UniBasic programs

share unnamed common when one program uses the EXECUTE, PERFORM,

or MDPERFORM command to call a second program.

If you enter STACKCOMMON without any parameters, UniData displays

the setting: ON or OFF.

STACKCOMMON has no effect on common areas when the UniBasic CALL

command is used to call programs.

For more information about assigning variables in UniBasic, see Developing
UniBasic Applications or see the COMMON command in the UniBasic
Commands Reference.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

ON Unnamed common is not shared with executed programs. The
unnamed common of the second program is initialized to 0. When
control is passed back to the first program, unnamed common is
restored to settings for that program.

Unnamed common is never passed to a phantom program.

OFF Unnamed common is shared with programs called with the ECL
EXECUTE command.

STACKCOMMON Parameters
1-456 UniData Commands Reference



Example

The following example displays the programs, test.common and

executed.program:

PROGRAM test.common
COMMON A,B,C,D
A =1
B =2
C =3
D =4
PRINT “In test.common, A,B,C,D = “:A:B:C:D
EXECUTE “RUN BP executed.pgm”
PRINT “Back in test.common, A,B,C,D = “:A:B:C:D
END

PROGRAM executed.pgm
COMMON A,B,C,D
PRINT “In executed.pgm. A,B,C,D = “:A:B:C:D
RETURN

In the following test run, we set STACKCOMMON OFF before executing

test.common, causing variables in unnamed common to be passed to the

executed program. Finally, we set STACKCOMMON ON, so that common

variables are no longer passed.

:STACKCOMMON OFF
:RUN BP test.common
In test.common, A,B,C,D = 1234
In executed.pgm. A,B,C,D = 1234
Back in test.common, A,B,C,D = 1234
:STACKCOMMON ON
:RUN BP test.common

In test.common, A,B,C,D = 1234
In executed.pgm. A,B,C,D = 0000
Back in test.common, A,B,C,D = 1234
   1-457



STARTPTR
STARTPTR is a synonym for the PTRENABLE command. For information,

see PTRENABLE.

Synonym

PTRENABLE
1-458 UniData Commands Reference



startud

Syntax

startud [-i ] [-m]

Description

The system-level startud command starts the UniData background processes

(smm, sbcs, and cleanupd). If the SB_FLAG is set to 1, UniData also starts the

Recoverable File System (RFS) daemons. This command ensures that the

UniData daemons start up in the correct sequence.

For information about startud and starting the UniData background

processes, see Administering UniData. For more information about startud

with the RFS, see Administering the Recoverable File System.

Note: To execute the startud command, you must log in as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-i Bypasses the automated crash recovery sequence on systems
running RFS.

Warning: To avoid file corruption on systems running RFS, IBM
recommends that you avoid using the -i parameter unless directed
to do so by IBM Technical Support.

-m Executed the ECL command mediarec to restore archived changes
made since the last backup. See the mediarec command in this
manual for more information about that command, and
Administering the Recoverable File System for information about
the recovery process.

startud Parameters
   1-459



Example

In the following example, UniData starts the UniData daemons with RFS

turned on (SB_FLAG = 1).

# $UDTBIN/startud
Using UDTBIN=/disk1/ud60/bin
All output and error logs have been saved
to /disk1/ud60/bin/saved_logs directory.
SMM is started.
SBCS is started.
CLEANUPD is started.
SM is started.
Unirpcd is started
UniData R6.0 has been started.
#

The next example, taken from UniData for Windows NT, starts the UniData

services:

D:\Informix\ud60\Bin>startud
Wait for Unidata Service to be started ...
The Unidata Service has been started successfully.
1-460 UniData Commands Reference



STATUS

Syntax

STATUS

Synonym

STAT

Description

The ECL STATUS command lists information about users logged onto the

system. For each user, UniData displays user ID, tty device ID, and date and

time of login. UniData also displays a list of the file systems and disk space

information.

On UniData for UNIX, the STATUS command display is equivalent to the

combined display of the WHO and AVAIL commands.

Example

The following example shows a STATUS display on UniData for UNIX:

:STATUS
carolw pts/1 Jun 6 07:55
carolw pts/4 Jun 6 08:29
amyc pts/5 Jun 6 08:59
amyc pts/6 Jun 6 09:20
/disk1 (/dev/vg01/lvol2 ): 313910 blocks 349051 i-nodes
/home (/dev/vg01/lvol1 ): 1667012 blocks 304276 i-nodes
/opt (/dev/vg00/lvol5 ): 54340 blocks 27470 i-nodes
/tmp (/dev/vg00/lvol6 ): 79036 blocks 28995 i-nodes
/usr (/dev/vg00/lvol7 ): 86260 blocks 54787 i-nodes
/var (/dev/vg00/lvol8 ): 117722 blocks 68583 i-nodes
/stand (/dev/vg00/lvol1 ): 58230 blocks 7659 i-nodes
/ (/dev/vg00/lvol3 ): 147210 blocks 14863 i-nodes
   1-461



The next examples shows a STATUS display on UniData for Windows NT:

: STATUS
terric pts/1 14:06:27 Jun 30 1999 (192.245.120.102)
Drive Free Bytes / Total Bytes
C: 188530688/649576448
D: 669504000/1496968704
:

Related Commands

AVAIL, WHO
1-462 UniData Commands Reference



STOPPTR
STOPPTR is a synonym for the PTRDISABLE command. For more

information, see PTRDISABLE.

Synonym

PTRDISABLE
   1-463



stopud

Syntax

stopud [-f]

Description

The system-level stopud command stops all UniData background processes.

The -f option forces UniData daemons to stop unconditionally, which kills all

active udt processes. For information about stopud with recoverable files, see

Administering the Recoverable File System.

Note: To execute the stopud command, you must log in as root on UniData for
UNIX or as Administrator on UniData for Windows Platforms.

Warning: Use this command with the -f option only as a last resort. It could cause
file corruption.

Examples

In the next example, taken from UniData on UNIX, UniData stops all

UniData daemons. In this example, the Recoverable File System is ON:

# $UDTBIN/stopud -f
Using UDTBIN=/disk1/ud60/bin
The Last archive file (/disk1/archive/ud500) is LSN -- 0
SM stopped successfully.
CLEANUPD stopped successfully.
SBCS stopped successfully.
SMM stopped successfully.
Unirpcd stopped successfully
Unidata R6.0 has been shut down.
#

The next example, taken from UniData for Windows NT, stops all UniData

services:

D:\Informix\ud60\Bin>stopud
Stop Unidata Service now ...

The Unidata Service has been stopped successfully.
1-464 UniData Commands Reference



stopudt

Syntax

stopudt pid [pidM...pidN]

Description

The system-level stopudt command stops one or more UniData processes.

This command sends a signal to the process requesting that the process

terminate in an orderly manner.

pid represents the process identification number for the process or processes

you intend to halt.

Tip: Use the ECL LISTUSER command or the system-level listuser command to
display a list of users and their processes.

Example

The following example demonstrates using LISTUSER to list all users on the

system, then execute stopudt against user 6372. The final LISTUSER display

demonstrates that this user has been eliminated from UniData:

: LISTUSER
Licensed/Effective # of Users Udt Sql Total
32 /32 2 0 2
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 15885 0 root udt pts/1 14:01:57 Jun 05 2000
2 15903 1172 claireg udt pts/2 14:02:28 Jun 05 2000
:!$UDTBIN/stopudt 15903
:LISTUSER

Licensed/Effective # of Users Udt Sql Total
32 /32 1 0 1
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 15885 0 root udt pts/1 14:01:57 Jun 05 2000
   1-465



Related Commands

deleteuser, LISTUSER
1-466 UniData Commands Reference



SUPERCLEAR.LOCKS

Syntax

SUPERCLEAR.LOCKS pid [locknum]

Synonym

SUPERCLEAR-LOCKS

Description

The ECL SUPERCLEAR.LOCKS command deletes semaphore locks set by

the user executing the command. This command can be executed from a

different process or terminal than the one from which the locks were set. You

can clear only the semaphore locks set by your process ID.

For information on UniData locks, see Developing UniBasic Applications or

Administering UniData.

Note: If you are logged in as root on UniData for UNIX or as Administrator on
UniData for Windows Platforms, you can execute SUPERCLEAR.LOCKS to clear
semaphore locks set by other users.

The LIST.LOCKS command displays the locks that are currently active. The
GETUSER command lists your user number.
   1-467



Parameters

The following table describes each parameter of the syntax.

Example

In the following example, SUPERCLEAR.LOCKS deletes locks set by user

carolw (user ID 1283) from UniData session 2253:

:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
1 2253 1283carolw ts/1 semaphor -1 0 1 X 10:44:29 Jun 31
6 2365 1283carolw ts/6 semaphor -1 0 2 X 10:44:29 Jun 31
:SUPERCLEAR.LOCKS 2253
:LIST.LOCKS
UNO UNBR UID UNAME TTY FILENAME INBR DNBR RECORD_ID M TIME DATE
6 2365 1283carolw ts/6 semaphor -1 0 2 X 10:44:29 Jun 31
:

Related Command

SUPERRELEASE

Parameter Description

pid Specified the process ID of the user that set the lock.

locknum Specifies the number of the lock to be released. If you do not
specify locknum, UniData releases all locks set by pid.

SUPERCLEAR.LOCKS Parameters
1-468 UniData Commands Reference



SUPERRELEASE

Syntax

SUPERRELEASE pid [inbr devnum | record_ID]

Description

The ECL SUPERRELEASE command clears exclusive file and record locks

set by the user executing the command. This command can be executed from

a different process than the one in which the locks were set.

Tip: Use the GETUSER command to list user number, user name, and user ID. Use
the LIST.READU command to display record locks that are active.

Parameters

The following table describes each parameter of the syntax.

Example

In the following example, the SUPERRELEASE command releases the record

lock set by user number 14435 on the file with an i-node number of 1121 and

a device number 45:

:SUPERRELEASE 14435 1121 45

Related Command

SUPERCLEAR.LOCKS
   1-469



sysmon

Syntax

sysmon [-b |-m] [-o outputfile][-tnnn]

Description

The system-level sysmon utility monitors the performance of the

Recoverable File System.

This information may help you make decisions about how to set UniData

configuration parameters. To learn more about sysmon and the Recoverable

File System, see Administering the Recoverable File System.

Note: You can us e t he ECL ! (bang) command to execute this command from the
ECL (colon) prompt.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-b Displays detailed information about the Block Index table (BIG) in
shared memory. You cannot use -m with -b.

-m Displays detailed information about user requests. You cannot use
the -b option with the -m option.

-o outputfile Directs sysmon output to outputfile.

-t nnn Samples the data at intervals of every nnn seconds.

sysmon Parameters
1-470 UniData Commands Reference



Example

The following example shows a sysmon display:

% sysmon
======= BLOCK INDEX GROUP (BIG) STATISTICS ======= Thu Jun 25
18:59:08 1999
PinRead :1579 TmRead :121 Dirty:0 Hits :1539
PinWrite :67 TmWrite:16 Neat :80 HitRate:93.50%
PinWaitQ :0 CmRead :0 Total:80
PinWaitRate:0.00% CmWrite:8
=============== LATCHING STATISTICS =============== === TM STATUS
===
Type----WaitQ---Latches-WaitRate-PollCall-PollRate Tm# :2 Req#:204
Big : 0 12720 0.00% 0 0.00% ActTm:2
Aft : 0 248 0.00% 0 0.00%
Aimg: 0 252 0.00% 0 0.00% === SHM INFO ====
Bimg: 0 162 0.00% 0 0.00% ShmPV:197 Total:197
========================= LOG FILE STATISTICS
=========================
TmBimgFlush:29 WaitQ0:58 LogCkSuccess:8089 BimgRawBlks:41
TmAimgFlush:29 WaitQ1:0 LogCkFail :58 AimgRawBlks:29
CmBimgFlush:10 WaitQ2:0 LogOvrflos :0 TotRaw :70
CmAimgFlush:10 WaitQ3:102 LogSwitchd :5
LogID-Total-Length
4 1 1 ========== RECORD INFO ========== === TRANS INFO ===
5 1 1 RecRead : 865 AvgRead : 61 Committed: 76
6 1 1 RecWrite : 0 AvgWrite: 0 Aborted : 0
7 1 1 RecDelete: 0
TotLength:4
   1-471



systest

Syntax

systest [-mn][-sn][-u][-ffilename][-v][c {n|r}]

Description

The system-level systest command, available only on UniData for UNIX,

checks all parameters in the udtconfig file located in /usr/ud60/include. For

more information about setting UniData configuration parameters, as well as

systest, see Administering UniData.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

[-mn] Changes memory map display by about n MB. Highly platform
dependent. Do not use this unless advised by IBM.

[-sn] Changes memory map display by about n MB. Highly platform
dependent. Do not use this unless advised by IBM.

[-u] Creates UniData configuration parameters if they do not already
exist in the udtconfig file.

[-f filename] Creates a file with the specified filename that contains the UniData
configuration parameters that systest would calculate if you
specified the -u parameter.

[-v] Displays detailed (verbose) output.

[-c {n|r}] Checks current kernel parameter settings against our recommenda-
tions. Specify the -cr parameters to compare against
recommendations for the Recoverable File System. Specify the -cn
parameters if you will not be using recoverable files.

systest Command Parameters
1-472 UniData Commands Reference



Note: Prior to Release 4.1, the systest -u command may have updated values that
already existed in the udtconfig file. Beginning with Release 4.1, existing values are
no longer updated, but parameters that do not exist in the udtconfig file are added by
systest -u. To change existing values to recommended values, IBM recommends
using the udtconf command.

Examples

This example demonstrates executing systest -f (followed by the UNIX diff

command) to find out what changes systest -u would make to udtconfig:

# ./systest -f /tmp/testconfi
...
#diff/tmp/testconfig /usr/ud60/include/udtconfig
33c33
<SHM_MAX_SIZE=16777216

...

Notice that diff output includes lines like

33c33

which shows the edit command necessary for correcting differences. In this

example, systest would have changed the value of SHM_MAX_SIZE. This is

the type of correction to udtconfig you would expect if you change the

shmmax kernel parameter after installing UniData or since you last ran

systest.

systest -f does not update LOCKFIFO, PART_TBL, or

WRITE_TO_CONSOLE in output.If they were present in your udtconfig file

(and they usually are after installation) they always show up in diff output.

You can use this information to decide how you want to change the live

udtconfig file. Remember, you need to stop and start UniData for the changes

to take effect.

systest -f updates NFILES, so this is also a great, noninvasive way to check

NFILES when that setting is suspect.
   1-473



T.ATT

Syntax

T.ATT [cn] [BLKSIZE block] [TAPELEN length]

Synonym

T- ATT

Description

The ECL T.ATT command attaches a tape drive for exclusive use by the

current process. Before you can use any tape commands, the tape unit must

be defined. See SETTAPE for information about initializing a tape unit.

Tip: If you have trouble reading tapes from non-UniData systems, try varying the
block size.
1-474 UniData Commands Reference



Parameters

The following table lists the T.ATT parameters.

Parameter Description

nn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit
numbers, 0–9. If you do not indicate the tape unit number,
UniData uses tape unit 0 (zero).

Do not separate the conversion code from the tape unit
with a space.

BLKSIZE block Indicates block size. block is a valid block size. If you do not
stipulate BLKSIZE, UniData uses the block size set by the
SETTAPE command.

TAPELEN length Indicates a tape length for multi-reel tape processing.
length is the desired tape length in megabytes.

Note: TAPELEN applies only to tapes created in UniData.
UniData cannot read multi-reel TDUMP tapes made on
legacy systems.

T.ATT Parameters
   1-475



Example

In the following example, UniData attaches tape unit 4 without indicating a

block size. (For the block size, UniData uses the block size set by the

SETTAPE command.)

:T.ATT 4
tape unit 4 blocksize = 16384.
:T.STATUS
UNIT STATUS UDTNO USER CHANNEL ASSIGNED
NUMBER NAME NAME BLOCKSIZE
1 AVAILABLE
2 AVAILABLE
3 AVAILABLE
5 AVAILABLE
8 AVAILABLE
4 ASSIGNED 3 root /tmp/diskfile1 16384
:

Related Commands

SETTAPE, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL, T.READ,T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-476 UniData Commands Reference



T.BAK

Syntax

T.BAK [n |MU[cn]

Synonym

T-BAK

Description

The ECL T.BAK command moves the pointer to a tape backward n files.

Before you can execute any tape commands, the tape unit must be

configured. See SETTAPE for information about initializing a tape.
   1-477



Parameters

The following table describes each parameter of the syntax.

Related Commands

SETTAPE, T.ATT, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL,T.READ,T.REW,T.SPACE, T.STATUS, T.UNLOAD,T.WEOF

Parameter Description

n The number of files to move the pointer back.

MU cn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit
numbers, 0–9. If you do not indicate the tape unit number,
UniData uses tape unit 0 (zero).

Do not separate the conversion code from the tape unit
with a space.

T.BAK Parameters
1-478 UniData Commands Reference



T.CHK

Syntax

T.CHK [cn]

Synonyms

T-CHK, T.CHECK

Description

The ECL T.CHK command reads the contents of a tape that was produced

with the T.DUMP command and checks for tape errors such as physical

damage and block size corruption.

The first digit of nn represents the conversion code number. The second digit

is the unit number. If you do not indicate nn, UniData uses 00. UniData

allows up to 10 unit numbers, from 0 through 9.

Note: Before you can execute any tape commands, the tape system must be
configured. See SETTAPE for information about initializing a tape.
   1-479



Parameters

The following table lists the T.CHK parameters.

Related Commands

SETTAPE, T.ATT, T.BAK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL, T.READ, T.REW, T.SPACE,T.STATUS, T.UNLOAD, T.WEOF

Parameter Description

c Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion

■ 2 – Invert high-bit

■ 3 – Swap bytes

Note: Do not separate the conversion code from the tape unit with a
space.

n Tape unit number. UniData allows up to 10 unit numbers, from 0
through 9. If you do not indicate the tape unit number, UniData uses
tape unit 0 (zero).

Note: Do not separate the conversion code from the tape unit with a
space.

T.CHK Parameters
1-480 UniData Commands Reference



T.DET

Syntax

T.DET [n]

Synonym

T- DET

Description

The ECL T.DET command releases a tape unit that was attached with the

T.ATT command. n is the tape unit number. UniData allows up to 10 unit

numbers, from 0 through 9.

Before you can use any tape commands, the tape system must be configured.

See SETTAPE for information about initializing a tape.

Example

In the following example, UniData releases tape unit 8:

: T.DET 8

Related Commands

SETTAPE, T.ATT, T.BAK,T.CHK, T.DUMP,T.EOD, T.FWD, T.LOAD,

T.RDLBL, T.READ, T.REW,T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
   1-481



T.DUMP

Syntax

T.DUMP [DICT] filename [MU cn][record[recordM...recordN]|select_criteria]

[[PICK | pick] [HDR.SUP]]

Synonym

T-DUMP

Description

The ECL T.DUMP command copies the contents of a file to a tape that was

attached with the T.ATT command. UniData writes an end-of-file mark at the

end of the file.

T.DUMP works with an active select list. If you wish to copy a sorted subset

of records, create a select list before using T.DUMP. For information about

creating select lists, refer to Using UniQuery. If a record ID is included in a

saved list that does not exist in the file, UniData displays a message that the

record was not found and not copied.

Before you can execute any tape commands, the tape unit must be

configured. See SETTAPE for information about initializing a tape.

Note: UDT.OPTIONS 50 allows you to choose the ASCII characters used as the
end-of-record mark. When this option is on, UniData uses character 251, a UniData
text mark. When this option is off, UniData uses character 254, an attribute mark,
followed by the text mark. This feature provides compatibility with Pick® on
Ultimate systems.

Tip: Due to the differences in Pick ® operating systems and manufactured tapes,
IBM suggests that you use the HDR.SUPP keyword when using the T.DUMP
command, and when using the Pick® T-LOAD command to avoid inconsistencies in
tape labels.
1-482 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Parameter Description

DICT Indicates the dictionary portion of the file. If you do not
stipulate DICT, UniData copies only the data portion of
the file.

filename The UniData file to be copied.

MU cn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit
numbers, 0–9. If you do not indicate the tape unit number,
UniData uses tape unit 0 (zero).

Do not separate the conversion code from the tape unit
with a space.

record The records within filename to copy.

select_criteria The record IDs, a select list of the record IDs, or a selection
condition. If you do not indicate select_criteria, UniData
copies all records within filename.

PICK | pick Produces a tape that can be loaded on a Pick® system. To
avoid incompatibility in tape label format, suppress the
label by including HDR.SUP.

HDR.SUP Suppresses the generation of a tape label.

T.DUMP Parameters
   1-483



Examples

The following example copies all records from the ORDERS demo file to

default tape unit 0 with no conversion:

:T.DUMP ORDERS
193 record(s) dumped to tape

In the following example, UniData sends the contents of the ORDERS demo

file to tape unit 0 with no conversion. Since only one number is indicated on

the command line, UniData uses that number for the conversion code and

uses 0 for the tape unit:

:T.DUMP ORDERS MU 1
193 record(s) dumped to tape

Related Commands

SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.EOD, T.FWD, T.LOAD,

T.RDLBL,T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-484 UniData Commands Reference



T.EOD

Syntax

T.EOD [n]

Synonym

T-EOD

Description

The ECL T.EOD command moves the file pointer for tape unit n to the end of

the file. UniData allows up to 10 tape unit numbers, from 0 through 9.

Before you can execute any tape commands, the tape unit must be

configured. See SETTAPE for information about initializing a tape.

Related Commands

SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.FWD, T.LOAD,

T.RDLBL, T.READ,T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
   1-485



T.FWD

Syntax

T.FWD n

Synonym

T- FWD

Description

The ECL T.FWD command moves the file pointer for tape unit n to the

beginning of the next file.

Before you can use any tape commands, the tape unit must be configured. See

SETTAPE for information about initializing a tape.
1-486 UniData Commands Reference



T.LOAD

Syntax

T.LOAD [DICT] filename [MU cn][select_criteria]] [OVERWRITING]

[TAPELEN length] [PICK | pick]

Synonym

T-LOAD

Description

The ECL T.LOAD command loads to filename records that were stored on

tape using the T.DUMP command. UniData cannot read files from tapes that

were created using a tape command other than T.DUMP.

UniData can read Pick ® system tapes that were created with T.DUMP and

the PICK (or pick) option without tape labels. To avoid incompatibility

between systems with different tape label formats, suppress the tape label

when performing the T.DUMP operation.

The tape unit must have been attached using T.ATT before being loaded with

the T.LOAD command.

Before you can use any tape commands, the tape unit must be configured. See

SETTAPE for information about initializing a tape.

Note: UDT.OPTIONS 50 selects ASCII characters that UniData can use as the end-
of-record mark. When this option is on, UniData uses character 251, the UniData
text mark. When this option is off, UniData uses character 254, the attribute mark,
followed by the text mark. This feature provides compatibility with Pick ® on
Ultimate systems.
   1-487



Parameters

The following table describes each parameter of the syntax.

Parameter Description

DICT Dictionary records will be loaded.

filename The target disk file. filename must exist in the UniData
account.

MU cn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit
numbers, 0–9. If you do not indicate the tape unit number,
UniData uses tape unit 0 (zero).

Do not separate the conversion code from the tape unit
with a space.

select_criteria The record IDs, a select list of the record IDs, or a selection
condition. If you do not indicate select_criteria, UniData
copies all records within filename.

Tip: For information about creating select lists, see Using
UniQuery.

OVERWRITING Overwrites records that already exist in the target file.

TAPELEN length Indicates the tape length for multi-reel tape processing.
length represents the desired tape length in megabytes for
multi-reel tape processing.

PICK | pick Removes special end-of-block characters from tapes to
expedite the conversion process to UniData.

T.LOAD Parameters
1-488 UniData Commands Reference



Example

The following example loads records stored on tape unit 0 to file

ORDERS_LOAD. UniData loads only the records that meet the selection

criteria ORD_DATE < 01/01/96.

:T.LOAD ORDERS_LOAD WITH ORD_DATE < 01/01/96
56 records loaded to ORDERS_LOAD
:

Related Commands

SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.RDLBL,

T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
   1-489



T.RDLBL

Syntax

T.RDLBL [MU cn]

Synonym

T-RDLBL

Description

The ECL T.RDLBL command reads the tape label (the first 80 characters) of

a file that was saved to tape by the T.DUMP command. The label displays on

the terminal.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

MU cn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit
numbers, 0–9. If you do not indicate the tape unit number,
UniData uses tape unit 0 (zero).

Do not separate the conversion code from the tape unit
with a space.

T.RDLBL Parameters
1-490 UniData Commands Reference



Example

The following is a T.RDLBL display:

:T.RDLBL
L4000 16:01:40 14 Jun 1999 ORDERS

Related Commands

SETTAPE, T.ATT, T.BAK,T.CHK, T.DET,T.DUMP, T.EOD, T.FWD, T.LOAD,

T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
   1-491



T.READ

Syntax

T.READ [-code][cn]

Synonym

T-READ

Description

The ECL T.READ command reads the next record from tape and displays it

on the display. The tape unit must have been attached using T.ATT. To quit

processing the tape, enter q at the prompt;T.READ reads a tape to end-of-file.

Before you can use any tape commands, the tape system must be configured.

For information about initializing a tape, see SETTAPE.
1-492 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Parameter Description

-code On UniData for UNIX, enables you to specify special options
associated with the UNIX “od” command. These options control
the format and display the records retrieved. Refer to your host
operating system manual for an explanation of the operating
system commands and their options.

cn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–9.
If you do not indicate the tape unit number, UniData uses tape
unit 0 (zero).

Do not separate the conversion code from the tape unit with a
space.

T.READ Parameters
   1-493



Example

The following example shows a T.READ display:

:T.READ 04
0000000 377 L 4 0 0 0 1 6 :01 :4 0
0000020 1 4 J u n 1 9 9 6 O R DE
0000040 R S
0000060
0000100 0 0
0000120 9 1 2376 1 0 24 037645 0 0 0376
0000140 9 9 84376 5 30 0 0376N /A3766
0000160 376 1 2 9 9 5 376 373 8 0 1376 1 0 13
0000200 3 376 5 9 6 4 0376 1 0 01 837611
0000220 0 0 0376 G r ay37613761 7 9 90
0000240 0 376 373 9 4 1 376 1 0 2 41376 5 40
0000260 0 0 376 1 0 0 09376 5 00 0 0376G
0000300 r a y376 1 03761 3 9 99 93763738

0000320 0 5 376 1 0 1 40376 4 02 6 03769
...

Related Commands

SETTAPE, T.ATT, T.BAK, T.CHK,T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL,T.REW, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
1-494 UniData Commands Reference



T.REW

Syntax

T.REW [n]

Synonym

T-REW

Description

The ECL T.REW command rewinds a tape unit to the beginning of the tape.

n is the tape unit number. UniData allows up to 10 unit numbers, from 0

through 9.

Before you can use any tape commands, the tape system must be configured.

See SETTAPE for information about initializing a tape.

Related Commands

SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL,T.READ, T.SPACE, T.STATUS, T.UNLOAD, T.WEOF
   1-495



T.SPACE

Syntax

T.SPACE [n |MU cn]

Synonym

T-SPACE

Description

The ECL T.SPACE command moves the file pointer n files forward on the

tape.

Before you can use any tape commands, the tape unit must be configured. See

SETTAPE for information about initializing a tape.
1-496 UniData Commands Reference



Parameters

The following table describes each parameter of the syntax.

Example

In the following example, UniData moves forward two files on a tape:

:T.SPACE 2
2 FILE ARE SKIPPED
:

Related Commands

SETTAPE, T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL, T.READ, T.REW, T.STATUS, T.UNLOAD, T.WEOF

Parameter Description

n The number of files to move the file pointer.

MU cn Indicates conversion and tape unit.

c – Conversion code number. Valid conversion codes are:

■ 0 – Default. No conversion. ASCII is assumed.

■ 1 – EBCDIC conversion.

■ 2 – Invert high-bit.

■ 3 – Swap bytes.

n – Tape unit number. UniData allows up to 10 unit numbers, 0–9. If
you do not indicate the tape unit number, UniData uses tape unit 0
(zero).

Do not separate the conversion code from the tape unit with a space.

T.SPACE Parameters
   1-497



T.STATUS

Syntax

T.STATUS [n]

Synonym

T- STATUS

Description

The ECL T.STATUS command displays the current tape device assignment.

n is the tape unit number. UniData allows up to 10 unit numbers, from 0

through 9. If you do not include a tape unit number, UniData displays

assignments for all tape units defined by SETTAPE.

T.STATUS displays the contents of the file udthome/sys/tapeinfo on UniData

for UNIX, or udthome\sys\tapeinfo on UniData for Windows Platforms.

Before you can use any tape commands, the tape system must be configured.

See SETTAPE for information about initializing a tape.

Example

The following example shows a T.STATUS display:

:T.STATUS
UNIT STATUS UDTNO USER CHANNEL ASSIGNED
NUMBER NAME NAME BLOCKSIZE
1 AVAILABLE
2 AVAILABLE
3 AVAILABLE
5 AVAILABLE
8 AVAILABLE
4 ASSIGNED 1 terric /tmp/diskfile1 4096
:

1-498 UniData Commands Reference



Related Commands

SETTAPE,T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL, T.READ,T.REW, T.SPACE, T.UNLOAD, T.WEOF
   1-499



T.UNLOAD

Syntax

T.UNLOAD [n]

Synonym

T-UNLOAD

Description

The ECL T.UNLOAD command rewinds and unloads a tape. n is the tape

unit number. UniData allows up to 10 unit numbers, from 0 through 9.

Before you can use any tape commands, the tape system must be configured.

See SETTAPE for information about initializing a tape.

Related Commands

SETTAPE,T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD, T.LOAD,

T.RDLBL, T.READ, T.REW, T.STATUS, T.STATUS, T.WEOF
1-500 UniData Commands Reference



T.WEOF

Syntax

T.WEOF [n]

Synonym

T-WEOF

Description

The ECL T.WEOF command writes an end-of-file mark on the tape. n is the

tape unit number. UniData allows up to 10 unit numbers, from 0 through 9.

Before you can use any tape commands, the tape system must be configured.

For information about initializing a tape, see SETTAPE.

Related Commands

SETTAPE,T.ATT, T.BAK, T.CHK, T.DET, T.DUMP, T.EOD, T.FWD,

T.LOAD,T.RDLBL,T.READ, T.REW, T.SPACE, T.STATUS, T.UNLOAD
   1-501



tandem

Syntax

tandem [-oxxx] udtno

Description

The UniData system-level tandem command displays or controls the input

and output displayed on another user’s terminal from your terminal.

Note: The tandem command is supported on UniData for UNIX only.

Parameters

The following table describes each parameter of the syntax.

tandem Modes

The tandem command has the following three modes:

■ Feed – Enables you to enter commands for another user on your

terminal. If you enter data at the same time as the other user, your

keystrokes are defined by the system implementation of the terminal

driver.

Parameter Description

-oxxx Use to specify three single characters to terminate tandem. If you
specify the -o option, UniData disables ESC+X as the terminating
character sequence.

udtno The udtno for the user for which you want to display or control
input and output.

tandem Parameters
1-502 UniData Commands Reference



■ Message – Enables you to send text to another user’s terminal. You

cannot control the location or format of the characters displayed on

the users terminal. Data is not treated as input for the other user.

■ View – Default mode. Shows another user’s input and output on

your terminal. This display continues when you use message or feed

mode.

You can change modes by entering any of the following escape sequences

(ESC + an action code).

Note: The COMO command does not capture output produced by tandem. When
you use tandem on a phantom process, you cannot use the feed or message mode.

The feed mode for a tandem session is not supported on all UNIX platforms. If this
mode is not supported on your operating system, UniData displays a message.

Escape
Sequence Description

ESC+D Puts tandem in view mode. Terminates message or feed mode if
active. Sends a BREAK to the other user’s process.

ESC+F Puts tandem in feed mode. Terminates message mode, if active.
You must log in as root to use feed mode.

ESC+M Puts tandem in message mode. Terminates feed mode, if active.

Q In view mode, same as ESC+X. No effect in other modes.

ESC+U Same as ESC+D.

ESC+V Puts tandem in view mode. Terminates message or feed mode, if
active.

ESC+X Ends the tandem session. If you did not specify -o c1 c2 c3 on the
command line.

ESC+ESC In message or feed mode, enables you to send ESC to another
user’s terminal.

ESC+? Displays information on your terminal, and also displays the
status information for the current session.

tandem Action Codes
   1-503



TERM

Syntax

TERM [[type] | [A|,B|,C |,D]]

Description

The ECL TERM changes the settings for your terminal and printer for the

current UniData session. If you do not indicate type or any of the options (A

through D), UniData displays the current settings for the terminal, excluding

terminal type.

Use a comma as a placeholder for options you are not changing.

Terminal setup is part of the system setup process. IBM recommends that you

use .login or .profile files to store terminal settings. For more information

about system setup, see Administering UniData.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

type The terminal type.

A The number of characters per line for the display terminal (default:
80).

,B The number of lines per page for the display terminal (default: 23).
TERM ,0 disables pagination, so that UniData does not pause at the
end of each display page.

,C The number of characters per line for the printer (from 1 through
256).

,D The number of lines per page for the printer (default: 60). 0 disables
pagination.

TERM Parameters
1-504 UniData Commands Reference



Examples

In the following example, UniData displays the current settings for the

display terminal and the printer:

: TERM
TERM parameters are all numeric:
TERM A,B,C,D
For the terminal
A=number of characters in a line(80).
B=number of lines per page(23).
For the line printer
C=number of characters in a line(132).
D=number of lines per page(60).
:

The next example changes all settings for the terminal and one setting for the

printer. Notice the comma that acts as a placeholder for option C, which does

not change:

:TERM 25,10,,40
:TERM
TERM parameters are all numeric:
TERM A,B,C,D
For the terminal
A=number of characters in a line(25).
B=number of lines per page(10).
For the line printer
C=number of characters in a line(132).
D=number of lines per page(40).
:

The following example changes the terminal type:

:TERM vt100
:

   1-505



TIMEOUT

Syntax

TIMEOUT nn

Description

The ECL TIMEOUT command automatically logs a user out of a UniData

session if input is not received in nn seconds. The setting remains in effect for

the current UniData session only.

TIMEOUT applies to the following:

■ ECL (colon) prompt.

■ Proc IP and IBP commands.

■ Paragraph inline prompting (except with the I option).

■ UniBasic INPUT commands and the IN function.

TIMEOUT does not apply to the prompt that displays after an interrupt in

ECL.

UniData executes the LOGOUT paragraph before exiting the session.

Warning: Depending on your application coding, setting TIMEOUT could cause
logical database inconsistencies. For example, without transaction processing in
effect, an application might update part of a record, prompt for user input, and then
time out at the prompt without updating the rest of the record.

Example

In the following example, the TIMEOUT command logs the user off after 59

seconds if UniData receives no input:

:TIMEOUT 59
Process will timeout after waiting 59 seconds for input.
:

1-506 UniData Commands Reference



trunclog

Syntax

trunclog[-minline n | -minsize n] [-verbose] [logfilename...]

Description

The trunclog command appends the contents of a UniData log file you

specify to its corresponding saved file in the $UDTBIN/saved_logs directory

while UniData is running. UniData then truncates the log file to a size of zero,

and writes a message similar to the following example in the truncated log

file:

The file was truncated : Thu Jul 25 11:30:47

If you do not specify a file name to truncate, trunclog truncates the following

files:

■ cleanupd.errlog

■ sbcs.errlog

■ sm.log (UNIX only)

■ smm.errlog

■ udt.log (Windows platforms only)

■ udtlatch.log

You must be root on UniData for UNIX or Administrator on UniData for

Windows Platforms to execute this command, and you must set the UDTBIN

environment variable.
   1-507



Parameters

The following table describes each parameter of the syntax.

If you do not specify -minline n or -minsize n, UniData truncates all of the log

files you specify.

Example

The following command truncates all log files:

# trunclog

The following command truncates all log files with a minimum size, in bytes,

of 1K:

# trunclog -minsize 1024

The next command truncates the sm.log file:

# trunclog sm.log

Warning: Because UniData does not set an exclusive lock while copying and
truncating a log file, it is possible that one or more messages, for example, those
generated by another UniData daemon, may be lost.

Parameter Description

-minline n Truncates only the log files which contain at least n lines.

-minsize n Truncates only the log files which contain at least n bytes.

-verbose Prints the handling messages.

logfilename Name of the log file to truncate.

trunclog Parameters
1-508 UniData Commands Reference



udfile

Syntax

udfile [-r | -s] filename

Description

The system-level udfile command converts a UniData file to or from

recoverable. If you enter this command without options, UniData displays

the type of type (recoverable or nonrecoverable).

Warning: You cannot convert files with this command while UniData is running.

Note: You must have root permissions to change the recoverability type of a file.

Execute this command at the system prompt.

The udfile command will not convert files that were created in 1/2-K blocks.

If you attempt to do so, UniData generates an error message indicating that

the file cannot be converted to recoverable. You must resize the file to at least

a 1-K block size using the ECL RESIZE command or the UniData system-

level memresize command. Or, you can create a new file with at least a 1K

block size, then copy the contents of the old file into the new one using the

ECL COPY command.

For details about converting files to recoverable with udfile, see Administering
the Recoverable File System.
   1-509



Parameters

The following table describes each parameter of the syntax.

Examples

The following example displays the fact that the CLIENTS demo file is

nonrecoverable:

% udfile CLIENTS
File ‘CLIENTS’ is non-recoverable dynamic file.
%

The next example changes the nonrecoverable CLIENTS demo file to

recoverable:

% udfile -r CLIENTS
Non-recoverable file ‘CLIENTS’ changed to recoverable file.
%

The following example changes the recoverable ORDERS demo file to

nonrecoverable:

% $UDTBIN/udfile -s $UDTHOME/demo/ORDERS
Recoverable file ‘/disk1/ud60/demo/ORDERS’ is changed to non-
recoverable file

Parameter Description

filename Name of the UniData file to convert.

-r Converts a nonrecoverable file to recoverable.

-s Converts a recoverable file to nonrecoverable.
1-510 UniData Commands Reference



udipcrm

Syntax

udipcrm

Description

The system-level udipcrm command removes all interprocess

communication (IPC) structures associated with UniData. Execute this

command at the system prompt.

If you are running multiple versions of UniData (for example, 5.2 and 6.0),

udipcrm removes only the structures associated with the version from which

you execute udipcrm.

Note: This command is supported on UniData for UNIX only.

Warning: Running udipcrm stops all UniData background processes and halts all
UniData user processes.
   1-511



udstat

Syntax

udstat [-b] [-l num |-Lpid][interval [count]]

Description

The system-level udstat command displays details about process groups and

the sbcs daemon.

Note: This command is supported on UniData for UNIX only.

Use this command at the UNIX prompt, or use the ECL ! (bang) command to execute
this command from the ECL (colon) prompt.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-b Displays benchmark values. Used by IBM only for diagnostic
purposes.

-l num Displays a process group using the local control table number
(num) of the group you want to sample.

-L pid Displays the process group using the group process identification
number pid.

interval [count] Invokes udstat with a time and count interval. The default
interval is 5 seconds. For example, udstat 10 3 displays current
statistics every 10 seconds three times, then stops.

udstat Parameters
1-512 UniData Commands Reference



The following table describes the column headings that display in the output

for the udstat command.

Column
Heading Description

pr Private p_code requests.

gr Global p_code requests.

po Overflow pages accessed.

iv id overflow accessed.

gl Locks requested in a process group.

gu Unlocks requested in a process group.

fs Times of floating to string.

op Virtual files opened.

rd Times of reads.

wt Times of writes.

dl Times of deletes.

sh Times of shell command.

sr Times of subr.

sc Stings flushed (screen io).

lc Total locks requested.

ul Total unlocks requested.

ph Total physical reads.

vr Total virtual requests.

udstat Display
   1-513



When you specify the -b parameter, the following headings are displayed in

place of po, iv, gl, gu, fs, op.

Examples

The following example shows a udstat display with the -b option:

% udstat -b
all process group lcp sbcs

pr gr cr tm1 tm2 tm3 tm4 tm5 rd wt dl sh sr sc lc ul ph vr
6 42 217 0 2k 82 3 12 0 2k 704 721 754 0
%

Old Heading -b Heading Description

po cr Times of carriage return input

iv tm1 setmark 1

gl tm2 setmark 2

gu tm3 setmark 3

fs tm4 setmark 4

op tm5 setmark 5

Changed Column Headings with -b Option
1-514 UniData Commands Reference



udt

Syntax

udt [program_name | RUN program_name | ECL_command]

Description

The system-level udt command starts a UniData session. For UniData to run,

the product must be installed and licensed, and the following environment

variables must be set correctly:

■ UDTBIN must be set to your UniData bin directory

■ UDTHOME must be set to your UniData home directory

Note: You must use the udtts command to start a UniData session if you are using
device licensing.

Execute this command at the system prompt.

Consult your system administrator for information about setting up your

UniData environment.

For a full description of the UniData environment variables, see

Administering UniData.

You can start a UniData session, execute a UniBasic program or ECL

command, then automatically exit the UniData session by entering the

program name or ECL command after the udt command from the system-

level prompt. In these cases, @USER.TYPE returns 2.
   1-515



Parameters

The following table describes each parameter of the syntax.

Examples

The following example shows how to start a UniData session:

% udt
UniData Release 6.0 Build: (4112)
(c) Copyright IBM Corporation 2002.
All rights reserved.
Current UniData home is /liz1/ud60/.
Current working directory is /home/claireg.
:

In the following example, the user attempted to start a UniData session when

the UniData daemons had not been started. To correct this problem, you must

first start UniData with the startud command.

# $UDTBIN/udt
Start SMM first!

Parameter Description

program_name Starts a UniData session, executes a cataloged program,
then automatically exits the UniData session. Enter the
command from the system-level prompt.

RUN program_name Starts a UniData session, executes a noncataloged
program, then automatically exits the UniData session.
Enter the command from the system-level prompt.

ECL_command Starts a UniData session, executes an ECL command,
then automatically exits the UniData session. Enter the
command from the system-level prompt.

udt Parameters
1-516 UniData Commands Reference



The next example illustrates how to start a UniData session, execute an ECL

command, then automatically exit the UniData session from the system-

level.

% udt LIST VOC SAMPLE 5
UniData Release 6.0 Build: (4112)
(c) Copyright IBM Corporation 2002.
All rights reserved.
Current UniData home is /liz1/ud60/.
Current working directory is /home/claireg.

:LIST VOC SAMPLE 5
LIST VOC SAMPLE 5 09:48:30 Jun 21 2002 1
VOC.......
LIST.LABEL
IN
NEWPCODE
NO.NULLS
SETLINE
5 records listed
:%

Related Command

BYE
   1-517



udtbreakon

Syntax

udtbreakon pid

Description

The system-level udtbreakon command enables the interrupt key from

another port. With this capability, users can enter the UniBasic debugger to

terminate a program that may be stuck in a loop. pid represents the udt

process id on another port for which you enable the interrupt key.

Use this command at the system prompt, or use the ECL ! (bang) command

to execute this command from the ECL (colon) prompt.

Tip: Use the LISTUSER command to find the process ID for which you intend to
enable the interrupt key. The process ID for the UniData session is shown in the
USRNBR column.

Related Commands

ON.BREAK, PTERM -BREAK ON
1-518 UniData Commands Reference



udtconf

Syntax

udtconf

Description

The system-level udtconf command automatically sets udtconfig parameters

for shared memory. Although shared memory requirements are highly

application- and platform-dependent, udtconf can provide suggestions for

udtconfig parameters and provide information about the actual state of your

system.

For detailed information about udtconf, see Administering UniData.

Example (UniData for UNIX)

The following example shows the main screen of the udtconf utility:
   1-519



To advance to a field displayed on the screen, press TAB. To page down, press

CTRL+D. To page up, enter CTRL+U. The udtconf utility displays warning

messages if some of the kernel parameters are not adequate to support the

values udtconf calculates. Make sure that the kernel parameter for

semaphore undo structures, usually semmnu, is adequate to support the

number of authorized users prior to running udtconf.

Settings for the udtconfig parameters NUSERS, SHM_GNTBLS, N_TMQ,

and N_PGQ, and N_GLM_GLOBAL_BUCKET are based on the number of

authorized users. Although udtconf displays warning messages if kernel

parameters are not adequate to support these settings, the udtconfig file is

updated with the values you set if you choose to ignore the warnings. In this

case, UniData may not be able to start. For more information about

configuring your UniData system, see Administering UniData.
1-520 UniData Commands Reference



Example (UniData for Windows Platforms)

The following example shows the main screen of the udtconf utility:

To view the udtconfig parameters, scroll through the list.The udtconf utility

displays warning messages if some of the system-level parameters are not

adequate to support the values udtconf calculates. To change the value of a

parameter, double-click the parameter, enter the setting in the New Value
box, and then click Set. To save your changes, click Save. To verify the

settings against operating system limitations, click Check. To exit the

program without saving changes, click Exit.
   1-521



Settings for the udtconfig parameters NUSERS, SHM_GNTBLS, N_TMQ,

and N_PGQ, and N_GLM_GLOBAL_BUCKET, are based on the number of

authorized users. Although udtconf displays warning messages if

parameters are not adequate to support these settings, the udtconfig file is

updated with the values you set if you choose to ignore the warnings. In this

case, UniData may not be able to start. For more information about

configuring your UniData system, see Administering UniData.
1-522 UniData Commands Reference



udtinstall

Syntax

udtinstall [-f filename][-c]

Description

The system-level udtinstall command installs UniData.

Note: This command is supported on UniData for UNIX only.

For information about installing UniData, see Installing and Licensing UniData
Products.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

-f filename Indicates that all required user input is included in an ASCII file
names filename.

-c Automatically invokes confprod after the installation process is
complete, using its default options.

udtinstall Parameters
   1-523



udtlangconfig

Syntax

udtlangconfig

Description

The system-level udtlangconfig command completes the following tasks:

■ Changes the language group for the current installation of UniData.

■ Converts ASCII values used for UniData delimiters and other

reserved characters using the UniData convmark command for all

files in the demo database and udthome/sys directories on UniData

for UNIX or udthome\sys directory on UniData for Windows

Platforms.

Warning: On UniData for UNIX, these directories may not contain any
UNIX links (created with the UNIX ln command). convmark produces an
error message and aborts if they do.

■ Starts UniData in the language you specify.

Note: To execute the udtlangconfig command, you must log in as root on UniData
for UNIX or as Administrator on UniData for Windows Platforms, and be in the
udtbin directory.

Language group numbers correspond to the record mark value (@RM), print at value
(@PRINT_AT), and the null value. If you are currently running UniData 3.3.2i,
you need to run udtlangconfig to change the print at value from the previous 128 to
the new 130 ASCII value.
1-524 UniData Commands Reference



Example

The following example shows the entire udtlangconfig process. In the section

that prompts you to enter the language, UniData sets the default to match the

operating system LANG setting. In this example, LANG is set for French.

# udtlangconfig

Starting configuration of UniData RDBMS system.
The following prompts have the default answers in brackets [],
press Enter to accept these answers.

Using UDTBIN=/usr/ud60/bin

WARNING: ‘stopud -f’ will stop the Unidata System with force.
This may not guarantee the consistency of the database files.

Would you like to continue?(y/n) [n]
y
SM stopped successfully.
CLEANUPD stopped successfully.
SBCS stopped successfully.
SMM stopped successfully

Unidata R6.0 has been shut down.

Please select the appropriate language from the list below:
Language Locale
------------------------------
ENGLISH C
ENGLISH_UK english
ENGLISH_G2 C
JAPANESE japanese.euc
FRENCH french
------------------------------
Please enter language from above list [FRENCH]:
FRENCH
Input complete, UniData processing...
Using UDTBIN=/usr/ud60/bin

All output and error logs have been saved
to /usr/ud60/bin/saved_logs directory.
SMM is started.
SBCS is started.
CLEANUPD is started.
SM is started.

UniData R6.0 has been started.

You now have completed the configuration process.
This is the end of the configuration process.
   1-525



udtmon

Syntax

udtmon

Description

The system-level udtmon command starts the Monitor/Profile utility, part of

the UniData System Administration Manager (USAM). Monitor/Profile is a

menu-driven monitoring tool that provides you with information about

UniData user and system activity.

To exit the Monitor/Profile utility, continue pressing ESC. The cursor returns

to the environment from which you entered the utility.

Note: udtmon is supported on UniData for UNIX only.

You can select from ten different displays that show system resource use, in either text
or graphic display. For more information about Monitor/Profile, refer to Using
USAM.

Examples

In the following example, UniData opens a USAM session:

:!udtmon
UniData Monitor Utility Version 1.1.5
Display Configuration Help

Display statistics on use of Unidata and the system over a time
interval.
1-526 UniData Commands Reference



udtts

Syntax

udtts

Description

The system-level udtts command starts a UniData session when you are

using device licensing. For UniData to run, the product must be installed and

licensed, and the following environment variables must be set correctly:

■ UDTBIN must be set to your UniData bin directory

■ UDTHOME must be set to your UniData home directory

Note: You must use udtts to enter a UniData session if you are using device
licensing. If you use udt, device licensing has no effect.

Execute this command at the system prompt.

Consult your system administrator for information about setting up your

UniData environment.For a full description of the UniData environment

variables, see Administering UniData.

Examples

The following example shows how to start a UniData session:

% udtts
UniData Release 6.0 Build: (4112)

(c) Copyright IBM Corporation 2002.
All rights reserved.
Current UniData home is /liz1/ud60/.
Current working directory is /home/claireg.
:

   1-527



In the following example, the user attempted to start a UniData session when

the UniData daemons had not been started. To correct this problem, you must

first start UniData with the startud command.

# $UDTBIN/udtts
Start SMM first!
Related Command
BYE
1-528 UniData Commands Reference



UDT.OPTIONS

Syntax

UDT.OPTIONS [n {ON | OFF}]

Description

The ECL UDT.OPTIONS command modifies command behavior. The

setting remains in effect throughout the UniData session or until you reset it.

By setting various UDT.OPTIONS ON or OFF, you can guide behaviors such

as the following:

■ How UniData sorts alphanumeric data for right-justified sorts.

■ How UniData handles page breaks.

■ The kind of message that UniData displays when you delete data

from a file using a select list.

■ Whether to suppress the echo of a prompt character and data when

UniData passes data to a UniBasic program to fill an input statement.

■ Where UniData returns control after a Proc executes a UniBasic

program.

To use a combination of options, you must set each one separately.

For descriptions of the effects of each UDT.OPTION, see the UDT.OPTIONS
Commands Reference.

Tip: If you want UniData to set UDT.OPTIONS ON every time you start a
UniData session, create a login paragraph that turns them on every time you login.
For more information about creating login paragraphs, see Using UniData.
   1-529



Parameters

The following table describes each parameter of the syntax.

Examples

To view the current setting of each option, enter the ECL UDT.OPTIONS

command at the UniData ECL (colon) prompt:

:UDT.OPTIONS
1 U_NULLTOZERO OFF
2 U_PSTYLEECL OFF
3 U_SHLNOPAGE OFF
...
109 U_TELNET_NODELAY OFF
110 U_OCONV_EMPTY_STR OFF
111 U_NT_CTRL_C_IGNORE OFF

To set an individual option, use the option number with the UDT.OPTIONS

command and indicate whether to turn the option ON or OFF. The next

example turns UDT.OPTIONS 2 ON:

:UDT.OPTIONS 2 ON
:

Parameter Description

n The number of the UDT.OPTION you want to change.

ON Switches the UDT.OPTION on.

OFF Switches the UDT.OPTION off.

UDT.OPTIONS Parameters
1-530 UniData Commands Reference



uniapi_admin

Syntax

uniapi_admin

Description

The system-level uniapi_admin command starts the ObjectCall

Administration tool.
   1-531



UNIENTRY

Syntax

UNIENTRY [DICT] filename record

Synonyms

ENTRO, UFORM

Description

The ECL UNIENTRY command invokes the UniData file-building tool. This

command sets an exclusive lock on the file being accessed.

When you use UniEntry to modify the dictionary of a file, UniData uses the

DICT.DICT dictionary to format the display of dictionary attributes. For

more information about using UniEntry to build UniData files, see Using
UniData.

UniEntry displays all D-type attributes. To display multivalued attributes,

you must select the attribute number and press ENTER.

You cannot use UniEntry to enter the null value into an attribute.

Note: If UniData cannot modify or delete a record due to the presence of a trigger,
UniData displays an informational message that the update or delete operation was
not executed.

Regarding other editors:

■ The ECL AE command invokes the UniData Alternate Editor. You

can use this line editor to edit UniData hashed files and UniBasic

source programs.

■ The ECL ED command invokes the standard operating system editor

supported by UniData. See ED, in this manual, for more information.

■ The ECL VI command invokes vi, the UNIX System V visual editor,

from within UniData.
1-532 UniData Commands Reference



■ You can edit UniData hashed files and DIR-type files with any ASCII

text editor. See your operating system documentation for more

information on supported editors. Be aware, though, of any changes

or conversions the editor might make to files it opens.

Parameters

The following table describes each parameter of the syntax.

Example

The following example opens a record in the CLIENTS demo file and

displays each attribute in the record.

:UNIENTRY CLIENTS 9999

CLIENTS RECORD ID==>9999

0 @ID=9999
1 FNAME=Paul
2 LNAME=Castiglione
3 COMPANY=Chez Paul
4 CITY=Paris
5 STATE=
6 ZIP_CODE=75008
7 COUNTRY=France
8 ==>ADDRESS
9 ==>PHONE_NUM PHONE_TYPE

FROM 8 to 9 ARE MULTI VALUED FIELDS SCREENS.

Enter ‘DELETE’ ‘UNCHANGE’ ‘QUIT’ or NUMBER to change
Change=

Parameter Description

DICT Opens the dictionary portion of the file.

filename A UniData file to access.

record A record in filename.

UNIENTRY Parameters
   1-533



Related Commands

AE, ED
1-534 UniData Commands Reference



UNSETDEBUGLINE

Syntax

UNSETDEBUGLINE

Description

The ECL UNSETDEBUGLINE command releases the port that you were

using for dual-terminal debugging in UniBasic.

For more information about UniBasic and the UniBasic debugger, see

Developing UniBasic Applications.

Related Commands

DEBUGLINE.ATT, DEBUGLINE.DET, SETDEBUGLINE
   1-535



UNSETLINE

Syntax

UNSETLINE line

Description

The ECL UNSETLINE command disconnects a communications line that

had been initialized with SETLINE for use during the current UniData

session. If you do not specify a parameter, UniData displays the current

setting.

UNSETLINE modifies the ASCII file udthome/sys/lineinfo on UniData for

UNIX or udthome\sys\lineinfo on UniData for Windows Platforms.

Note: To execute the UNSETLINE command, you must log in as root on UniData
for UNIX or as Administrator on UniData for Windows Platforms.

For information about initializing a communication line, see SETLINE and

LINE.ATT.

Related Commands

UniData

LINE.ATT, LINE.DET, LINE.STATUS, PROTOCOL, SETLINE

UniBasic

GET, SEND For information, see the UniBasic Commands Reference.
1-536 UniData Commands Reference



UPDATE.INDEX

Syntax

UPDATE.INDEX filename

Description

The ECL UPDATE.INDEX command applies deferred updates to alternate

key indexes when automatic updating was disabled by DISABLE.INDEX. If

you are running the Recoverable File System (RFS), the ENABLE.INDEX

command automatically updates the index.

You do not have to execute ENABLE.INDEX before updating with

UPDATE.INDEX.

Tip: Depending on the number and size of your index, automatic updating may
adversely impact system performance. By deferring updating to a time of low
activity, you may improve system performance during peak activity times.

Examples

In the following example, UniData applies deferred updates to the index for

the ORDERS demo file:

:UPDATE.INDEX ORDERS
Total Defferred Updates Applied: 1
:

   1-537



To find out if an index file has updates pending, use the LIST.INDEX

command to display data about the file, as shown in the next example. Notice

the entry on the line for Index updates. This tells you that automatic updating

is disabled and there are pending updates.

Alternate Key Index Details for File ORDERS Page 1
File.................. ORDERS
Alternate key length.. 20
Node/Block size....... 4K
OV blocks............. 1 (0 in use, 0 overflowed)
Indices............... 4 (1 D-type)
Index updates......... Disabled, Indices require updating
Index-Name...... F-type K-type Built Empties Dups In-DICT S/M F-
no/VF-expr....
NAME V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’,
CLIENT_NO,’FNAME‘,’X’): “ “: TRANS(‘CLIENTS’,CLIENT_NO,’LNAME’,’
X’)
GRAND_TOTAL V Num Yes Yes Yes Yes S PRICE*QTY; SUM(SUM(@1))
COUNTRY V Txt Yes Yes Yes Yes S TRANS(‘CLIENTS’, CLIENT_NO,’COUNT
RY’,’X’)
PRODUCT_NO D Num Yes Yes Yes Yes M 4
:

Note: DELETE.INDEX fails when an index is disabled.

Related Commands

BUILD.INDEX, CREATE.INDEX, DELETE.INDEX, DISABLE.INDEX,

ENABLE.INDEX,LIST.INDEX, UPDATE.INDEX
1-538 UniData Commands Reference



updatesys

Syntax

updatesys

Description

The system-level updatesys command updates the installed version of

UniData.

Note: This command does everything the system-level udtinstall command does,
except that it updates your udthome/sys directory instead of creating a new one. This
leaves your global catalog space intact.

For information about installing and upgrading UniData, see Installing and
Licensing UniData Products.
   1-539



updatevoc

Syntax

updatevoc [-[A |C |I |O |N |S]][directory]

Description

The system-level updatevoc command updates the VOC file for an account.

If you do not name a directory or use any options, UniData updates the VOC

file in the current account and appends notes regarding changes to the

vocupgrade file. UniData updates the VOC file from a master file located in

udtbin/VOCUPGRADE on UniData for UNIX or udtbin\VOCUPGRADE on

UniData for Windows Platforms.

Depending on the option(s) selected, updatevoc takes one or more of the

following actions:

■ Compares the account VOC file to VOCUPGRADE.

■ Notes differences between the two files, appending them to or

overwriting the vocupgrade file, in the current account.

■ Displays informational messages and updates records in the local

accounts VOC file.

■ Updates the version record in the VOC file, which is read by the

VERSION command.

Tip: IBM recommends that you run this command on every UniData account after
you upgrade to a new version of UniData. For tracking purposes, run updatevoc
from within the account for which you are updating the VOC.
1-540 UniData Commands Reference



Parameters

The following table lists the updatevoc parameters. When you use these

options in combination, use the minus sign only once, preceding the first

option listed (such as in updatevoc -ACI).

Examples

The following example, taken from UniData for UNIX, uses the UNIX more

command to display the contents of vocupgrade in a demo account.

Parameter Description

directory UniData account directory that contains the VOC file you intend to
update.

-A Adds new records to the VOC file in the specified directory and in
all accounts that reside in the directory, but does not modify existing
VOC records. Appends to vocupgrade notes on differences between
the two VOC files.

-C Adds new records to the VOC file in the specified directory, but does
not modify existing VOC records. Does not add notes to vocupgrade
on differences between the two VOC files.

Note: The -I parameter overrides the -C parameter.

-I Prompts for verification before adding or modifying records to the
VOC file in the specified directory. Does not add notes to vocup-
grade on differences between the two VOC files.

-O Overwrites existing entries in the account’s VOC without
prompting for verification. Does not add notes to vocupgrade on
differences between the two VOC files.

-N Adds new records to the VOC file in the specified directory, but does
not modify existing VOC records. Appends notes to vocupgrade on
differences between the two VOC files.

-S Adds new records to the VOC file in the specified directory, but does
not modify existing VOC records. Suppresses the informational
messages ordinarily displayed after each change.

updatevoc Parameters
   1-541



Tip: Notice the phrases old item and new item that appear next to each entry. old item
means that UniData has applied changes to an existing VOC entry. new item notes
a difference between the two VOC files for which no change has been made.

:!more vocupgrade
BELL~K~BELL | old item |
CP~PA~SPOOL <<I2,FILENAME>> <<I3,ITEMID>> | old item |
CREATE~SQLV~VIEW~TABLE~INDEX | old item |
DEFAULT.LOCKED.ACTION~V~DEFAULT.LOCKED.ACTION | old item |
DROP~SQLV~VIEW~TABLE~INDEX~INTO | old item |
HELP.FILE~F~@UDTHOME/sys/HELP.FILE~@UDTHOME/sys/D_HELP.FILE | old
item |
HELP~V~HELP | old item |

The next example updates a demo VOC file. For this example, the VOC

record for the SAMPLE keyword has been changed from type K to type V, so

that it differs from the entry in VOCUPGRADE.

Notice that UniData adds new entries to the account VOC file but does not

change the SAMPLE VOC record. If a change had been made to SAMPLE, the

last message would indicate a new item saved to

/home/carolw/demo/vocupgrade.

:AE VOC SAMPLE
Top of “SAMPLE” in “VOC”, 2 lines, 8 characters.
001: V
002: SAMPLE
Bottom.

:
:!updatevoc -C
Now update /home/carolw/demo/VOC ... ...
Adding KEYDATA to VOC file
Adding KEYONLY to VOC file
Adding PARTTBL to VOC file
Adding VERSION to VOC file
Adding version to VOC file
Deleting ERRMSG from VOC file
366 total items in /disk1/ud51/bin/VOCUPGRADE.
6 items updated in VOC file.
1 old items saved to /home/carolw/demo/vocupgrade.
0 new items saved to /home/carolw/demo/vocupgrade.
:

1-542 UniData Commands Reference



The next example updates the local accounts VOC file, but does not record

anything to the vocupgrade file.

:!updatevoc -O
Now update /home/carolw/demo/VOC ... ...
Adding SAMPLE to VOC file
Adding VERSION to VOC file
Adding ERRMSG to VOC file
Adding version to VOC file
Deleting ERRMSG from VOC file
366 total items in /disk1/ud41/bin/VOCUPGRADE.
5 items updated in VOC file.
0 old items saved to /home/carolw/demo/vocupgrade.
0 new items saved to /home/carolw/demo/vocupgrade.

Related Command

VERSION
   1-543



usam

Syntax

usam

Description

The system-level usam command runs USAM (UniData System
Administration Manager), an interactive utility. For detailed information on

this utility, see Using USAM and USAM Batch/USAM Print.

To quit the USAM utility, press ESC continuously until you return to the

environment from which you entered USAM.

Note: USAM is supported on UniData for UNIX only.

Use this command at the system prompt, or use the ECL ! (bang) command to execute
this command from the ECL (colon) prompt.
1-544 UniData Commands Reference



USHOW

Syntax

USHOW [DICT] filename [attribute [attributeN...]]

Description

The ECL USHOW command generates lists of selected attributes from

UniData files. This command is an implementation of the Prime Information

SHOW command.

Parameters

The following table lists the USHOW parameters.

Parameter Description

DICT Lists the dictionary file.

filename A UniData file.

attribute The name of an attribute to display.

USHOW Parameters
   1-545



Examples

The following example shows the result of USHOW with the ORDERS demo

file:

:USHOW ORDERS PRODUCT_NO
Page no :1 of 13 No.ofrecs. selected 0 of 193
ORDERS|Product Number|
------------------------------------------------------------------
--------------
1 | 912| | 55040| |

2 | 801| | 11000| |
3 | 941| | 50000| |
4 | 805| | 11140| |
5 | 830| | 55090| |
6 | 970| | 13003| |
7 | 863| | 40005| |
8 | 834| | 40007| |
9 | 861| | 56080| |
10| 890| | 54090| |
11| 914| | 40007| |
12| 803| | 10004| |
13| 832| | 10020| |
14| 972| | 10090| |
15| 860| | 57010| |
------------------------------------------------------------------
--------------
Command :
S (range) - Select, C (range) - Clear, F - forwars, B - backwards
Range - ALL, VISIBLE, nn-nn, nn, nn-At
the Command : prompt, you can do any of the following:
 S Save a range of record IDs to a select list
 C Clear a range of record IDs
 F Move forward through the USHOW display
 B Move backward through the USHOW display

After creating a select list, UniData displays the active select list prompt (>).

At this prompt, you can operate on the active select list or enter quit or QUIT

to exit the USHOW process and end the UniData session.

To return to the UniData colon prompt, enter CLEARSELECT at the active

select list prompt, or press your interrupt key (enable the interrupt key with

PTERM -BREAK).
1-546 UniData Commands Reference



UV_RESTORE

Syntax

UV_RESTORE [ -HDYNAMIC0 | -HDYNAMIC1] [-O] [-S] [-R] [-X

char_list][-Kn] [-A outputfile] [-F [DICT | DATA | DIR | filelist]] [-D
uniVerse_path] acct_name

Description

The system-level UV_RESTORE command restores a UniVerse account from

tape to disk in UniData format.

The target account directory that you intend to restore must reside on the

machine to which you are migrating. UV_RESTORE reads data from an

account you specify by a full path (uniVerse_path) and restores it to a UniData

account. If the UniData account does not exist, UV_RESTORE creates it and

names it acct_name.

Use this command at the system prompt.

Tip: If very large data files (larger than 1 gigabyte) have been saved from UniVerse,
IBM recommends that you create the target UniData files as dynamic before you
begin the restore. Assign a modulo to accommodate a file about 40 percent larger than
the original UniVerse file.
   1-547



Parameters

The following table describes each parameter of the syntax.

Parameter Description

-HDYNAMIC0 Creates dynamic files with hash type 0.

-HDYNAMIC1 Creates dynamic files with hash type 1.

-O Forces overwriting of files in the UniData account. (The
default UV_RESTORE behavior is to check the account for
existing file names, and if a file exists, UniData prompts to
skip or overwrite the file).

-R Removes each UniVerse file from the disk after conversion.
This is a useful parameter if you are short on disk space.

-S Truncates file names to 12 characters in length. This parameter
is not necessary if you run UV_RESTORE on an operating
system that automatically shortens file and program names.

-X char_list char_list indicates characters to be considered invalid for:

■ file names

■ account names

■ record IDs in DIR-type files

While restoring, UniData converts these characters to under-
score (_). If the resulting name conflicts with an existing
account name, UniData adds a character to the end of the
name to make it unique. For example: A&B becomes A_B. If
A_B is used by another file, the name becomes A_Ba.

Default invalid characters are the following: space * ? / & ‘.

You cannot specify nonprinting characters as invalid.

Do not separate characters in char_list with spaces or commas.

-K n Defines the size of the internal memory buffer (in kilobytes).
Default size is 8000 K.

System restoration performs best when buffer size is large.
Change the size to match the capacity of your operating
system.

UV_RESTORE Parameters
1-548 UniData Commands Reference



-A outputfile Creates filename, an ASCII text file, in the current directory,
containing statistics about each file on the tape. -A does not
restore files.

-F [DICT | DATA
|DIR | filelist]

Loads only certain kinds of files:

■ DICT– dictionary

■ DIR – directory (including DIR and LD)

■ DATA – hashed files (including DATA and LF)

■ filelist – files listed in filelist, an ASCII text file that you

create.

To convert files from different UniVerse accounts, specify the
path (uniVerse_path) in filelist. UV_RESTORE converts the files
into a single UniData account.

Tip: Use the -D parameter with this option so that you do not
have to include the full path for each file in filelist.

-D uniVerse_path Designates the location of the UniVerse account directory.

acct_name Name of the UniVerse account to be restored.

Parameter Description

UV_RESTORE Parameters (continued)
   1-549



VCATALOG

Syntax

VCATALOG filename catalogname programname

Description

The ECL VCATALOG command compares the object file and the compiled

program in the global catalog file byte-by-byte. If the source file has been

modified after the program was cataloged, VCATALOG returns a negative

result.

For more information on UniBasic, see Developing UniBasic Applications.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The file that contains the compiled version of the program. This
must be a DIR-type record in the VOC file.

catalogname The cataloged name of the object code for the program. By
default, this is the same as the program name, however, a
different name may be assigned when the program is cataloged.

programname The program that is globally cataloged under this name or
catalogname.

VCATALOG Parameters
1-550 UniData Commands Reference



Examples

In the following example, UniData verifies a program called

PSTLCODE_FMT which resides in the BP_SOURCE file of the demo

database:

:VCATALOG BP_SOURCE PSTLCODE_FMT PSTLCODE_FMT
Program ‘PSTLCODE_FMT’ verifies.
:

The following example demonstrates VCATALOG returning a negative

result, indicating that the source code has been changed since the program

was cataloged.

:VCATALOG BP TEST
Program ‘TEST’ does not verify.
   1-551



verify2

Syntax

verify2 [-Y | -y] [[-H | -h] block address][[-O|-o]block address]

Description

The system-level verify2 command detects corrupted files. You must have

read and write permissions for each file you check with verify2.

Warning: UniData must not be running when you execute this command.

For more information about verify2 and detecting corrupted files, see

Administering UniData.

Parameters

The following table describes the verify2 parameters.

Related Commands

dumpgroup, fixfile, fixgroup, guide

Parameter Description

-Y | -y Writes the file name and @ID of damaged records to a file
called /tmp/vrfy2.pid, where pid is the process ID of the
process than ran verify2.

[-H | -h] block address Bypasses checking the block whose hexadecimal address
is block address. This option allows you to bypass a single
damaged block while examining the rest of the file.

[-O | -o] block address Same as -h option, but -o allows you to bypass a block in
the overflow portion of a dynamic file.

verify2 Parameters
1-552 UniData Commands Reference



VERSION

Syntax

VERSION

Description

The ECL VERSION command displays the most current UniData product

version numbers recorded in the VOC file and the UniData bin directory as

well as the current patch level.

Example

In the following example, the UniData displays the versions of all UniData

products licensed on a system:

: VERSION
Module Name Version Licensed
UniData RDBMS............ 6.0 Yes
UniData OFS/NFA.......... 6.0 Yes
UniServer for ObjectCall. 6.0 Yes
RFS/TP................... 6.0 Yes
Device License........... 6.0 Yes
ODBC/UniOLEDB............ 6.0 Yes
UniObjects............... 6.0 Yes
   1-553



VI

Syntax

VI filename record

Description

The ECL VI command invokes the vi editor on UniData for UNIX, or the MS-

DOS editor on UniData for Windows Platforms from within UniData. VI

opens the file filename and record you name. For more information on these

editors, see your host operating system documentation.

Regarding other editors:

■ The ECL AE command invokes the UniData Alternate Editor. You

can use this line editor to edit UniData hashed files and UniBasic

source programs.

■ The ECL ED command invokes the standard operating system editor

supported by UniData. See ED in this manual for more information.

■ UniData supplies UniEntry for modifying UniData records.

■ You can edit UniData hashed files and DIR-type files with any ASCII

text editor. Refer to your operating system documentation for more

information on supported editors. Be aware, though, of any changes

or conversions the editor might make to files it opens.

Parameters

The following table describes each parameter of the syntax.

Parameter Description

filename The UniData file to be opened by the editor.

record The record in filename.

VI Parameters
1-554 UniData Commands Reference



Example

The following example shows how UniData invokes the vi editor from

within UniData in order to access a record in the CLIENTS demo file:

:VI CLIENTS 9999
Paul
Castiglione
Chez Paul
45, reu de Rivoli
Paris
75008
France
3342425544}3342664857
Work}Fax
~
~

   1-555



WAKE

Syntax

WAKE pid

Description

The ECL WAKE command activates a UniData process (pid) that has been

paused with either the ECL PAUSE command or the UniBasic PAUSE

command. If the process you specify has not been paused, UniData

disregards the next PAUSE issued for that process.

Examples

Note: See the ECL PAUSE command for more examples.

The following series of examples demonstrates executing the WAKE

command before executing PAUSE.

First, the user executes the listuser command to identify the process ID for the

current UniData session. The process ID is the located in the USRNBR

column. In this example, 11523 is the process ID for the session to pause:

: LISTUSER
Licensed/Effective # of Users Udt Sql Total
32 /32 2 0 2
UDTNO USRNBR UID USRNAME USRTYPE TTY TIME DATE
1 11523 1172 claireg udt ttyp3 11:42:50 Jun 05 1999
2 11528 0 root udt pts/0 11:43:45 Jun 05 1999

Next, the user initiates a second UniData session and executes a WAKE

against process 11523, the process identified in the preceding step:

:WAKE 11523
1-556 UniData Commands Reference



Finally, the user attempts to pause the first session with the PAUSE

command, but the command is ignored by UniData because of the previously

issued WAKE against this process:

: PAUSE
:

Related Commands

UniData

LIST.PAUSED, PAUSE

UniBasic Commands

PAUSE, WAKE – For information, see the UniBasic Commands Reference.
   1-557



WHAT

Syntax

WHAT

Description

The ECL WHAT command displays the system information stored in

udthome/include/sysconfig on UniData for UNIX or

udthome\include\sysconfig on UniData for Windows Platforms.

Examples

The following example shows a WHAT command display. The Product Serial

Number on the last line in the example is the text entered at the product

number prompt during udtinstall or updatesys on UniData for UNIX.

:WHAT
Platform         : HPUX11
Operating System : HP-UX hal B.11.00 A 9000/820 2000945515 two-
user license
Porting Date     : Sep. 05, 02
UniData Release  : 60_020905_4112
Ported by        :
Product Serial Number : serial_number

The next example illustrates output from the WHAT command on UniData

for Windows Platforms:
1-558 UniData Commands Reference



WHERE

Syntax

WHERE

Description

The ECL WHERE command displays the current account.

Example

The following example, taken from UniData for UNIX, shows a WHERE

command display:

: WHERE
/home/carolw/demo
:

   1-559



WHO

Syntax

WHO

Description

The ECL WHO command displays information about users logged onto the

system, including:

■ User ID

■ Port number

■ Date of login

■ Time of login

Example

In the following example, the UniData lists the users logged into the system:

: WHO
carolw pty/ttyv0 Jun 17 11:52
peggys pty/ttyv2 Jun 17 10:59
:

1-560 UniData Commands Reference



XTD

Syntax

XTD hex

Description

The ECL XTD command converts a hexadecimal number to its decimal

equivalent.

If the input number is longer than 8 digits, only the rightmost 8 digits are

converted. If the input contains characters other than 0-9 and A-F, XTD

returns 0.

The valid hexadecimal value ranges from 0 to FFFFFFFF. hexadecimal

numbers in the range between 80000001 (-2,147,483,647) and FFFFFFFF (-1)

are considered negative, and produce a negative decimal result.

XTD performs the inverse operation of the DTX command.

Example

In the following example, various hexadecimal values are translated to

decimal values:

:XTD FF
255
:XTD 34ab
13483
:XTD Ab2
2738
:XTD K01
0
:

   1-561



Related Command

DTX
1-562 UniData Commands Reference



@

Index

O QCA B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
account

changing to 1-272

creating UniData 1-312

displaying current 1-559

acctrestore command

described 1-13

ACCT.SAVE command

described 1-15

ACCT_RESTORE command

described 1-5

files created by 1-12

messages 1-11

procedure for using 1-9

activating

latest version of basic program 1-

323

UniData process after PAUSE 1-

556

AE command

described 1-17

Alternate Editor (AE)

commonly used commands in 1-

18

starting 1-17

alternate global catalog space

creating 1-314

alternate key index

building 1-39

updating 1-537

alternated key indexes

created in earlier releases 1-40

analyze_list file 1-12

archive files

initializing 1-270

arguments

syntax for 1-2

arithmetic calculations

applying truncation and

rounding 1-188

ASCII values

converting in UniData files 1-96

attaching

communication line 1-227

tape drive 1-474

AVAIL command

described 1-25

B
bang (!) command

described 1-4

basic program

activating latest version 1-323

BASICTYPE

current setting 1-30

how a program was compiled 1-

30

BASICTYPE command 1-30

BLIST command 1-32

BLOCK 1-80

block size

and KEYDATA files 1-116

and KEYONLY files 1-116

blocks

displaying number used/free 1-

25

BLOCK.PRINT command 1-35

BLOCK.TERM command 1-37

bnDEBUG.FLAG 1-131

braces in syntax statements 1-2

brackets in syntax statements 1-2



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
BUILD.INDEX command 1-39

BYE command 1-42

C
case insensitivity

reserved words 1-28

catalog

creating alternate global space 1-

314

CATALOG command 1-43

cataloged program

deleting 1-143

cataloged programs

direct 1-45

CENTURY.PIVOT command 1-48

changing

command behavior 1-529

file names 1-64

paths in catalog entries and file

pointers 1-336

changing accounts 1-272

CHECKOVER command 1-50

checkpoint

forcing 1-196

CLEARDATA command 1-59

clearing

file on disk before restoring 1-6

inline prompts 1-61

message queues 1-62

semaphore locks 1-55

terminal screen 1-63

CLEARPROMPTS command 1-61

clearq command 1-62

CLEAR.ACCOUNT command 1-

51

CLEAR.FILE command 1-52

CLEAR.LOCKS command 1-55

CLEAR.ONABORT command 1-56

CLEAR.ONBREAK command 1-58

CLR command 1-63

CNAME command 1-64

cntl_install command 1-67

commands

determining parser 1-163

syntax for 1-2

comment lines

converting from UniBasic 1-32

common

sharing unnamed 1-456

communication line

attaching 1-227

detaching 1-229

disconnecting 1-536

displaying status of 1-231

COMO command 1-68

comparing

small numbers 1-389

COMPILE.DICT command 1-72

compiling

programs for backward

compatibility 1-30

UniBasic programs 1-27

virtual attribute 1-72

configuration code

obtaining 1-77

configuration parameters

checking 1-472

displaying current values 1-422

setting 1-519

configuration values

testing 1-428

CONFIGURE.FILE command 1-74

confprod command 1-77

CONNECT command 1-79

options 1-80, 1-81, 1-82, 1-84, 1-85

CONTROLCHARS command 1-86

convcode command 1-88

convdata command 1-89

converting

ASCII values in UniData files 1-

96

comment lines from UniBasic 1-

32

data by conversion code 1-7

data files to Intel 386 integer 1-89

delimiters when using ED 1-166

file to or from recoverable 1-509

file to recoverable 1-13

hexadecimal to decimal 1-561

index files from Motorola

68000 1-94

invalid characters to

underscore 1-7

Motorola 68000 integer format 1-

88

restored file to dynamic 1-6

static file to dynamic file 1-91

UniData delimiters 1-524

CONVERT.SQL command 1-100

convhash command 1-91

convidx command 1-94

convmark command 1-96

COPY command 1-104

copying

dictionary 1-106

records 1-104

corruption

detecting file 1-552

CREATE.FILE command 1-110

CREATE.INDEX command 1-117

CREATE.TRIGGER command 1-

121

creating

alternate global catalog space 1-

314

index 1-117

UniData account 1-312

UniData files 1-110

currency sign

changing 1-384

D
daemons

displaying UniData 1-427

stopping UniData 1-464

data files

converting to Intel 386 integer 1-

89

data line transmission

setting 1-350

data source

connecting with BCI 1-79

data stack

clearing 1-59

date

display format 1-125

DATE command 1-124

dates

determining century 1-48

DATE.FORMAT command 1-125

dbpause

status 1-129

dbpause command 1-127
2 UniData Commands Reference



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
dbpause_status command 1-129

dbresume command 1-130

debugging

dual-terminal 1-133

setting dual-terminal 1-390

DEBUGLINE.ATT command 1-133

DEBUGLINE.DET command 1-134

DEBUG.FLAG command 1-131

decimal

converting from hexadecimal 1-

561

decimal point

changing character for 1-380

DEFAULT.LOCKED.ACTION

command 1-135

defining

number of local pages in

memory 1-307

DELETE command 1-137

DELETECOMMON command 1-

140

DELETE.CATALOG command 1-

143

deleting

named common 1-140

object code from CTLG 1-143

records 1-137

records from files 1-52

semaphore locks 1-467

delimiter

changing currency 1-384

delimiters

converting when using ED 1-166

detaching

communication line 1-229

device licensing

starting UniData session with 1-

527

df command

Index implementation of 1-25

dictionary records

copying 1-107

DICT.DICT

reloading 1-361

directly cataloged programs 1-45

disabling

printer 1-355

disconnecting

communication line 1-536

displaying

current settingsz for configuration

parameters 1-422

current tape device assignment 1-

498

index information 1-235

locks currently set 1-242

process ID (pid) 1-197

shared memory status and

usage 1-201

status of printers 1-451

system information 1-558

UniData daemons 1-427

UniData version 1-553

UNIX kernel parameters 1-225

user information 1-197

dispmsg file 1-12

dual terminal debugging

detaching 1-134

dual-terminal debugging

attaching 1-133

releasing port 1-535

DUMP_MD file 1-12

duplicate keys

in indexes 1-119

dynamic arrays

sorting 1-436

dynamic file

converting from static 1-91

rebuilding 1-362

dynamic files

changing characteristics 1-74

creating 1-112

deleting records from

multipart 1-53

displaying information on 1-20

special considerations for 1-115

using fixfile with 1-179

E
ECL

See Environment Control

Language (ECL)

ECL commands

entering at colon prompt 1-2

ECLTYPE command 1-163

ED command 1-165

editing

hashed file 1-17

UniBasic source program 1-17

VI editor 1-554

editing record in 1-446

editor

invoking standard OS editor 1-

165

ellipsis in sytax statements 1-2

ENABLE.INDEX command 1-168

ENABLE.USERSTATS

command 1-170

enabling

interrupt key 1-518

end-of-file mark

writing to tape 1-501

Environment Control Language

(ECL)

commands, entering at colon

prompt 1-2

defined 1-2

executing

UniBasic program 1-377

exit codes

phantom 1-341

exiting UniData

BYE command 1-42

F
FIBR command in AE 1-18

file

clearing locks 1-367

converting to or from

recoverable 1-509

copying contents to tape 1-482

detecting corrupted 1-552

displaying statistical

information 1-171

repairing damaged 1-176

resizing static data 1-370

file group

repairing 1-183

file locks

displaying 1-253

file names

changing 1-64

file pointer
3 UniData Commands Reference



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
setting 1-391

file size

estimating 1-115

FILELIMIT command 1-174

files

building tool 1-532

corrupted

repairing 1-202

created by newhome 1-315

creating 1-110

deleting records from 1-52

displaying in current account 1-

274

displaying long listing 1-276

dynamic 1-112

finding level 2 overflow 1-50

initializing archive 1-270

initializing log 1-270

resizing 1-296

testing hashed file

characteristic 1-213

FILEVER command 1-175

FILE.STAT command 1-171

FIR command in AE 1-19

fixfile command 1-176

using with dynamic files 1-179

using with static files 1-179

using with Windows NT 1-180

fixgroup command 1-183

fixtbl command 1-185

FLOAT.PRECISION command 1-

188

forcecp command 1-196

G
globally cataloged programs

calling 1-45

modifying 1-45

users sharing 1-379

groups

displaying statistics for 1-198

guide_ndx command 1-210

H
hash type

displaying 1-20

hashed files

testing 1-213

hexadecimal

converting to decimal 1-561

I
ICONV funtion

determining century 1-48

index

creating 1-117

enabling 1-168

index files

detecting corruption 1-210

indexes

and empty strings 1-119

displaying information 1-235

displaying statistics for 1-238

duplicate keys 1-119

initializing

communication line 1-397

inline prompts

clearing 1-61

insert mode in AE 1-18

inserting

subvalue marks 1-167

value marks 1-167

installing

UniData 1-523

Intel 386 integer format

converting to 1-89

Intel 386 internal format

converting index files to 1-94

interprocess communication

structures

removing 1-511

interrupt key

enabling 1-518

invalid characters

converting to underscore 1-7

invoking

MENU utility 1-302

See starting

K
kernel parameters 1-225

KEYDATA files

and block size 1-116

KEYONLY files

and block size 1-116

kp command

described 1-225

L
language

changing in language group 1-

382

language group

changing 1-524

displaying 1-241

level 2 overflow

finding files in 1-50

licensing

updating 1-77

LIMIT command 1-226

line

initializing communication 1-397

setting protocols for 1-350

LINE.DET command 1-229

LINE.STATUS command 1-231

LISTPEQS command 1-261

LISTPTR command 1-262

LISTUSER command 1-263

LIST.CONNECT command 1-233

LIST.INDEX command 1-235

LIST.LANGGRP command 1-241

LIST.LOCKS command 1-242

LIST.PAUSED command 1-245

LIST.QUEUE command 1-247

LIST.READU command 1-253

LIST.TRIGGER command 1-256

LIST.USERSTATS command 1-258

LO command 1-267

local control tables

displaying details about 1-277

LOCK command 1-268

locking

resources 1-268

locks

clearing 1-367

clearing record 1-368

clearing semaphore 1-55

deleting semaphore 1-467

displaying currently set 1-242
4 UniData Commands Reference



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
displaying file and record 1-253

displaying processes waiting

for 1-247

turning off terminal beeping 1-

135

log files

initializing 1-270

LOGTO command 1-272

log_install command 1-270

LS command 1-274

LSL command 1-276

lstt command 1-277

M
MAG_RESTORE command 1-279

makeudapi command 1-287

makeudt command 1-289

MAKE.MAP.FILE command 1-286

MAP command 1-291

MAX.USER command 1-293

mediarec command 1-294

memory buffer

defining size of 1-8

memresize command 1-296

MENUS command 1-302

merge load

changing 1-74

MESSAGE command 1-303

message queues

clearing 1-62

MIN.MEMORY command 1-307

modulo

displaying 1-20

estimating 1-114

recommended size 1-10

Motorola 68000 integer format

converting 1-88

converting from 1-89

converting index files from 1-94

multipart dynamic files

deleting records from 1-53

mvpart command 1-308

MYSELF command 1-311

N
named common

deleting 1-140

newacct command 1-312

newhome command 1-314

files created 1-315

NEWPCODE command 1-323

newversion command 1-325

NFA

setting user name 1-328

NFA parameters

displaying 1-233

NFAUSER command 1-328

NODIRCONVERT command 1-

329

nonprinting characters

controlling 1-86

NULL 1-81

null value

in indexes 1-119

O
object file

comparing to source file 1-550

ObjectCall

starting administration tool 1-531

ODBC requirements

conforming to 1-100

ON.ABORT command 1-330

clearing 1-56

ON.BREAK command 1-332

clearing 1-58

operating system

accessing with ! command 1-4

options

syntax for 1-2

overwriting

data in Pick® account 1-6

data portion of file 1-6

P
P (page display) command in AE 1-

18

PAGE command 1-334

parser

determining 1-163

determining BASICTYPE 1-30

part files

dynamic files and 1-23

moving 1-308

part tables

defined 1-23

paths

changing in catalog entries and

file pointers 1-336

PATHSUB command 1-336

PAUSE command 1-338

paused processes

displaying 1-245

pausing

UniData session 1-127

performance

monitoring Recoverable File

System’s 1-470

pgm_list file 1-12

PHANTOM command 1-340

Pick® accounts

compatibility with REALITY

7.0 1-6

restoring from tape 1-5

pid

See process ID

port

releasing for dual-terminal

debugging 1-535

PORT.STATUS command 1-344

Prefix 1-82

Prime Information

restoring accounts 1-279

PRIMENUMBER command 1-347

print job

killing 1-448

PRINT @ function

executing linefeed 1-376

printer

changing settings for 1-504

displaying defined 1-262

displaying requests made to 1-

261

printers

displaying status of 1-451

printing

contents of records 1-453

determining order of print jobs 1-

348

disabling printer 1-355

enabling printer 1-358
5 UniData Commands Reference



O QCA B D E F G H I J K L M N P R S T U V W X Y Z @
printing process

closing 1-444

PRINT.ORDER command 1-348

process groups

displaying details 1-512

process ID (pid)

displaying 1-197

processes

listing current 1-263

paused 1-245

waiting for locks 1-247

PROTOCOL command 1-350

PRTENABLE command 1-358

PTERM Command 1-353

PTRDISABLE command 1-355

Q
QUIT command 1-360

quotation marks in syntax

statement 1-2

R
READDICT.DICT command 1-361

rebuilding

dynamic file 1-362

REBUILD.FILE command 1-362

record

clearing locks 1-368

displaying to screen 1-334

printing contents of 1-453

reading from tape 1-492

RECORD command 1-365

record IDs

changing 1-64

record locks

displaying 1-253

records

copying 1-104

deleting 1-137

size 1-198

Recoverable File System

monitoring performance of 1-470

recoverable file system

reinitializing counters 1-67

recoverable files

guide command and 1-202

restoring 1-13

recovering

from system crash 1-294

RELEASE command 1-367

RELEASE.ITEMS command 1-368

releasing

port for dual-terminal

debugging 1-535

tape unit 1-481

reloading

DICT.DICT 1-361

removing

interprocess communication

structures 1-511

repairing

analyzing corrupted file 1-202

file group 1-183

replacing

UniBasic executable 1-325

reserved words

making case insensitive 1-28

RESIZE command 1-370

resize_list file 1-12

resizing

static data file 1-370

resizing files 1-296

resource usage

displaying information about 1-

344

restoring

Pick® account from tape 1-5

Prime accounts 1-279

UniVerse account from tape 1-

547

resuming

restore operation after

interruption 1-10

REUSE.ROW command 1-376

rewinding tape 1-495

RFS

initializing 1-270

rounding

applying 1-188

RUN command 1-377

S
saving

UNIX directory to tape 1-15

sbcs daemon

displaying details about 1-512

sbcsprogs command 1-379

select list

compiling programs from 1-27

semaphore locks

clearing 1-55

deleting 1-467

semaphores

UNIX kernel parameters and 1-

225

SETDEBUGLINE command 1-390

SETFILE command 1-391

SETLINE command 1-397

SETOSPRINTER command 1-399

SETPTR command 1-401

SETTAPE command 1-418

using before ACCT.SAVE 1-15

setting

data line transmission 1-350

shared memory configuration

parameters 1-421

udtconfig parameters 1-519

SET.DEC command 1-380

SET.LANG command 1-382

SET.MONEY command 1-384

SET.THOUS command 1-386

SET.TIME command 1-388

SET.WIDEZERO command 1-389

shared memory

configuration utility 1-421

setting udtconfig parameters

for 1-519

tracing management 1-430

UNIX kernel parameters and 1-

225

shmconf command 1-421

showconf command 1-422

showud command 1-427

smmtest command 1-428

smmtrace command 1-430

sms command 1-432

SORT command 1-436

sorting

dynamic arrays 1-436

SORT.TYPE command 1-437

SP-LISTQ command 1-450

split load
6 UniData Commands Reference



changing 1-74

split/merge type

changing 1-74

displaying 1-20, 1-198

SPOOL command 1-453

SPOOLHELP command in AE 1-19

SP.ASSIGN command 1-441

SP.CLOSE command 1-444

SP.EDIT command 1-446

SP.KILL command 1-448

SP.STATUS command 1-451

SQL command 1-455

STACKCOMMON command 1-

456

starting

Alternate Editor (AE) 1-17

ObjectCall administration tool 1-

531

UniData daemons 1-459

UniData session 1-515

UniData session with device

licensing 1-527

STARTPTR command 1-458

startud command 1-459

static file

converting to dynamic 1-91

static files

using fixfile with 1-179

STATUS command 1-461

stopping

UniData daemons 1-464

UniData process 1-465

STOPPTR command 1-463

stopud command 1-464

stopudt command 1-465

subvalue marks

inserting 1-167

SUPERCLEAR.LOCKS

command 1-467

SUPERRELEASE command 1-469

suspending processes 1-338

symbol table

creating 1-28

syntax statements

elements of 1-2

sysmon command 1-470

system information

displaying 1-558

system-level commands

accessing with ! command 1-4

entering at colon prompt 1-2

systest command 1-472

T
tandem command 1-502

tape

checking for errors 1-479

loading records to file 1-487

moving backward 1-477

moving file pointer forward 1-

496

reading label 1-490

reading records from 1-492

unloading 1-500

writing end-of-file mark 1-501

tape device

displaying current 1-498

tape drive

attaching 1-474

tape unit

moving file pointer 1-485

moving file pointer forward 1-

486

releasing 1-481

rewinding 1-495

TERM command 1-504

terminal

changing settings for 1-504

terminal beeping

turning off 1-135

terminal screen

clearing 1-63

terminal settings

establishing 1-353

test environments 1-213

testing

configuration values 1-428

hashed file 1-213

time

setting 1-388

TIMEOUT command 1-506

tracing

shared memory management 1-

430

trigger

creating 1-121

triggers

displaying 1-256

editing record containing 1-17

truncation

applying 1-188

T.ATT command 1-474

T.BAK command 1-477

T.CHK command 1-479

T.DET command 1-481

T.DUMP command 1-482

T.EOD command 1-485

T.FWD command 1-486

T.LOAD command 1-487

T.RDLBL command 1-490

T.READ command 1-492

T.REW command 1-495

T.SPACE command 1-496

T.STATUS command 1-498

T.UNLOAD command 1-500

T.WEOF command 1-501

U
udfile command 1-509

converting file to recoverable 1-

13

udipcrm command 1-511

UDOUT 1-84

udstat command 1-512

udt command 1-515

udtbreakon command 1-518

udtconf command 1-519

udtconfig parameters

checking 1-472

setting 1-519

udtinstall command 1-523

udtlangconfig command 1-524

udtmon command 1-526

udtts command 1-527

UDT.OPTIONS command 1-529

uniapi_admin command 1-531

UniBasic

source code program

editing 1-17

UniBasic compiler

backward compatibility 1-30

error messages 1-27

UniBasic debugger



@O QCA B D E F G H I J K L M N P R S T U V W X Y Z
creating symbol table for 1-28

UniBasic executable

replacing 1-325

UniBasic program

action when aborting 1-330

cataloging 1-43

comparing to object file 1-550

executing 1-377

listing to terminal screen 1-32

UniBasic programs

compiling 1-27

UniData

displaying version 1-553

installing 1-523

UniData account

creating 1-312

UniData BCI

connecting to data source 1-79

UniData daemons

displaying 1-427

starting 1-459

UniData delimiters

converting 1-524

UniData executable

rebuilding 1-289

UniData process

activating after PAUSE 1-556

displaying resourse usage 1-344

stopping 1-465

suspending 1-338

UniData processes

executing in background 1-340

UniData session

automatically logging out of 1-

506

displaying information about 1-

311

establishing terminal settings 1-

353

starting 1-515

starting with device licensing 1-

527

UNIENTRY command 1-532

UniVerse account

restoring from tape 1-547

UNIX

kernel parameters 1-225

unnamed common

sharing 1-456

UNSETDEBUGLINE command 1-

535

UNSETLINE command 1-536

updatesys command 1-539

updatevoc command 1-540

UPDATE.INDEX command 1-537

updating

alternate key index 1-537

VOC file 1-540

upgrading

UniData installation 1-539

usam command 1-544

user

displaying information about 1-

461

username

setting for NFA 1-328

users

determining maximum number

of 1-293

displaying information about 1-

197, 1-560

sharing globally cataloged

programs 1-379

USHOW command 1-545

UV_RESTORE command 1-547

V
value marks

inserting 1-167

VCATALOG command 1-550

VERBOSE 1-84

verify2 command 1-552

VERSION command 1-553

vertical lines in syntax

statements 1-2

VI command 1-554

virtual attributes

checking syntax 1-72

VOC file

updating 1-540

VOC (vocabulary) file

ECL commands installed in 1-2

W
WAKE command 1-556

WHAT command 1-558

WHERE command 1-559

WHO command 1-560

WIDTH 1-85

X
XTD command 1-561

Z
zero-length blocks, skipping 1-7

Symbols
! (bang) command

described 1-4

$UDTBIN

system-level commands stored

in 1-2

.fil_prefix_tbl file

auditor command and 1-23

_HOLD_ directory

clearing 1-51

_HOLD_ file 1-446

_MAP_ file

rebuilding 1-286, 1-291

_PH_ directory

clearing 1-51

_PH_ files

creating 1-68
8 UniData Commands Reference


	About This Manual
	ACCT_RESTORE
	acctrestore
	ACCT.SAVE
	AE
	ANALYZE.FILE
	auditor
	AVAIL
	BASIC
	BASICTYPE
	BLIST
	BLOCK.PRINT
	BLOCK.TERM
	BUILD.INDEX
	BYE
	CATALOG
	CENTURY.PIVOT
	CHECKOVER
	CLEAR.ACCOUNT
	CLEAR.FILE
	CLEAR.LOCKS
	CLEAR.ONABORT
	CLEAR.ONBREAK
	CLEARDATA
	CLEARPROMPTS
	clearq
	CLR
	CNAME
	cntl_install
	COMO
	COMPILE.DICT
	CONFIGURE.FILE
	confprod
	CONNECT
	CONTROLCHARS
	convcode
	convdata
	convhash
	convidx
	convmark
	CONVERT.SQL
	COPY
	CREATE.FILE
	CREATE.INDEX
	CREATE.TRIGGER
	DATE
	DATE.FORMAT
	dbpause
	dbpause_status
	dbresume
	DEBUG.FLAG
	DEBUGLINE.ATT
	DEBUGLINE.DET
	DEFAULT.LOCKED.ACTION
	DELETE
	DELETECOMMON
	DELETE.CATALOG
	DELETE.FILE
	DELETE.INDEX
	DELETE.TRIGGER
	deleteuser
	DISABLE.INDEX
	DISABLE.USERSTATS
	DTX
	dumpgroup
	DUP.STATUS
	ECLTYPE
	ED
	ENABLE.INDEX
	ENABLE.USERSTATS
	FILE.STAT
	FILELIMIT
	FILEVER
	fixfile
	fixgroup
	fixtbl
	FLOAT.PRECISION
	forcecp
	GETUSER
	GROUP.STAT
	gstt
	guide
	guide_ndx
	HASH.TEST
	HELP
	HUSH
	HUSHBASIC
	ipcstat
	ISTAT
	kp
	LIMIT
	LINE.ATT
	LINE.DET
	LINE.STATUS
	LIST.CONNECT
	LIST.INDEX
	LIST.LANGGRP
	LIST.LOCKS
	LIST.PAUSED
	LIST.QUEUE
	LIST.READU
	LIST.TRIGGER
	LIST.USERSTATS
	LISTPEQS
	LISTPTR
	LISTUSER
	LO
	LOCK
	log_install
	LOGTO
	LS
	LSL
	lstt
	MAG_RESTORE
	MAKE.MAP.FILE
	makeudapi
	makeudt
	MAP
	MAX.USER
	mediarec
	memresize
	MENUS
	MESSAGE
	MIN.MEMORY
	mvpart
	MYSELF
	newacct
	newhome
	NEWPCODE
	newversion
	NFAUSER
	NODIRCONVERT
	ON.ABORT
	ON.BREAK
	PAGE
	PATHSUB
	PAUSE
	PHANTOM
	PORT.STATUS
	PRIMENUMBER
	PRINT.ORDER
	PROTOCOL
	PTERM
	PTRDISABLE
	PTRENABLE
	QUIT
	READDICT.DICT
	REBUILD.FILE
	RECORD
	RELEASE
	RELEASE.ITEMS
	RESIZE
	REUSE.ROW
	RUN
	sbcsprogs
	SET.DEC
	SET.LANG
	SET.MONEY
	SET.THOUS
	SET.TIME
	SET.WIDEZERO
	SETDEBUGLINE
	SETFILE
	SETLINE
	SETOSPRINTER
	SETPTR
	SETTAPE
	shmconf
	showconf
	SG.LIST
	showud
	smmtest
	smmtrace
	sms
	SORT
	SORT.TYPE
	SP.ASSIGN
	SP.CLOSE
	SP.EDIT
	SP.KILL
	SP-LISTQ
	SP.STATUS
	SPOOL
	SQL
	STACKCOMMON
	STARTPTR
	startud
	STATUS
	STOPPTR
	stopud
	stopudt
	SUPERCLEAR.LOCKS
	SUPERRELEASE
	sysmon
	systest
	T.ATT
	T.BAK
	T.CHK
	T.DET
	T.DUMP
	T.EOD
	T.FWD
	T.LOAD
	T.RDLBL
	T.READ
	T.REW
	T.SPACE
	T.STATUS
	T.UNLOAD
	T.WEOF
	tandem
	TERM
	TIMEOUT
	trunclog
	udfile
	udipcrm
	udstat
	udt
	udtbreakon
	udtconf
	udtinstall
	udtlangconfig
	udtmon
	udtts
	UDT.OPTIONS
	uniapi_admin
	UNIENTRY
	UNSETDEBUGLINE
	UNSETLINE
	UPDATE.INDEX
	updatesys
	updatevoc
	usam
	USHOW
	UV_RESTORE
	VCATALOG
	verify2
	VERSION
	VI
	WAKE
	WHAT
	WHERE
	WHO
	XTD

